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ABSTRACT

Pressure-driven membrane process

such as roygrse osmosis and nanofiltration, represent

in gro@ind, Surface, and seawater, as well as in mining
and urban wastewater. The se i cterjtics and productivity of these processes depend
on several factors, includimg t cut-off and operating conditions (applied
pressure, recovery rate. @ model salt rejection performance of water in Tan
Tan City (Morocco) usincNg i embranes (NF90, NF200, NE90) and reverse osmosis

fit experimental data. The results showed excellent agreement
tion rates and model-predicted rejection rates for both algorithms.
Optimization model gave slightly better results compared to Particle
he combined use of a well-established theoretical framework and

esdlination and water treatment, NF and RO membranes, Spiegler-Kedem model, Particle Swarm
Optimization, Grey Wolf Optimization.

INTRODUCTION

The increasing demand for freshwater resources, coupled with the decline of natural water
resources, has led to the rapid development of desalination technologies [1], [2]. Pressure-
driven membrane processes, such as nanofiltration (NF) and reverse osmosis (RO), have
become some of the most advanced and effective techniques for separating salts and other
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compounds from water sources [3]. Membrane usage is expanding rapidly across various
fields, with desalination of brackish and saline water being a prominent application [4], [5].
Pressure-driven membranes are particularly significant among desalination techniques.
Classical reverse osmosis is widely recognized as a standard method for desalination [2].
However, membrane technology can be a competitive separation technique due to its superior
performance and cost efficiency compared to traditional filtration processes [6], [7].

Many software such as ROSA, Winflow, and IMS have been developed and implemented
in designing RO systems [8]. These software packages calculate and give warnings about
design errors, such as feed pressure or recovery ratio exceeding membrane limits. The ROSA
software, in particular, was validated through an extensive case study [8], filling a gap in the
literature by simplifying the parameter classification and offering a clear, verified
system design.

The majority of modelling works in membrane studies have utilized mod
extended Nernst-Planck equation [9]. These models are developed based g
understanding of the physical mechanisms underlying membrane processg
mathematical complexity and entail considerable computationalgses
thorough comprehension of the filtration process and mem@

Spiegler-Kedem model emerges as a viable option ft
membrane systems [11].

The Spiegler-Kedem model has been used 1
rejection in membranes to understand transport
instance, Ponti¢ et al. (2008) [11] combine
characterization to highlight the releva
membranes. Spiegler and Kedem (1
foundations, while Bowen and Mukh
membrane selectivity. These studi

se membranes [12], [13]. For
d) modelling with physicochemical
@dltr-Kedem model for NF and RO

idated its effectiveness in characterizing
e Spiegler-Kedem model views membranes

as a black box and character usiflg two parameters: salt permeability (Ps) and
reflection coefficient (o) piegler-Kedem model can provide reasonable
predictions of salt rejectid of membrane processes [13]. However, this model
often requires extensi ata and is limited by its complexity and computational

demands [10].
To address t
explored the

d enhance the precision of model fitting, recent studies have
pired metaheuristic algorithms as effective tools for solving

ave studied salt rejection using these algorithms [19], [20], [21],
ed on swarm intelligence, such as Particle Swarm Optimization (PSO)

s. Rinawati et al. (2024) [22] focused on contaminant removal optimization. PSO is
inspired by the social behaviour of birds flocking or fish schooling [23], while GWO mimics
the leadership hierarchy and hunting mechanism of grey wolves [23].

Early studies on water treatment using desalination technologies in Tan Tan City (Morocco)
have been carried out since 2001 [24]. Tan Tan was selected as a case study due to its increasing
reliance on desalination to meet freshwater demands in an arid environment. All these studies
were based on field measurements of and did not examine the evolution influence of salt
rejection toward under various operational conditions. Tahri (2001) [24] investigated
freshwater supply prospects from non-conventional water sources for the region, including
desalination, while Pontié et al. (2006) [25] focused on the application of nanofiltration for



large-scale pilot plants, highlighting its potential for improving water quality. These studies,
however, did not explore the optimization of membrane processes under varying conditions. In
addition, they recommended the applied of theoretical model for optimizing parameters in
membrane process [26], [27]. In a management context, rapid estimation of salt rejection
percentage as a function of permeate flux in given membranes is searched by managers [28].
The Spiegler-Kedem model, coupled with bio-inspired metaheuristic algorithms for
optimization can constitute the appropriate tools to use because they are easy to apply, and
more adapted to management contexts. Also, it is methodologically correct to start with the
simplest description of the phenomena under study and to evaluate the limits of this
approximation before investigating more complex models [29], [30].

This study aims to model salt rejection in NF and RO membranes using an ap

experimental data.
The utilization of the Spiegler-Kedem model provide

algorithms efficiently tune the model para
the gap between theoretical predictions

The integration of the PSO and
model represents a novel and powe

reduces the need for extensive i data, thus making the modelling process more
practical and manageable orcgit provides valuable information for the design and
operational stages of dgsa
scenarios, underpin 4@ nctigal ap lications in regions susceptible to salinity and water
treatment processg O

significantly to t

ed? models for optimizing parameters in membrane processes. Both
-GWO models have demonstrated high effectiveness in optimizing
rane modelling. Additionally, a comparative analysis of these algorithms
determine the most efficient optimization technique. The results indicated
-GWO model produced slightly better outcomes compared to the SKM-PSO

METHODS

In the study of membrane processes, accurate modelling is essential for predicting
performance and optimizing operational parameters. This section presents a comprehensive
approach to modelling membrane behaviour using the Spiegler-Kedem model. To enhance the
model's accuracy and efficiency, advanced bio-inspired metaheuristic algorithms was
employed, specifically PSO and GWO. These methods effectively optimize complex,
nonlinear problems effectively, providing robust solutions for improving membrane
performance.



Spiegler Kedem model

Membrane performance is evaluated based on membrane rejection, R (%), and permeate
flux, Jp (m.s™"). When dealing with dilute aqueous mixtures containing water and a solute, the
membrane's selectivity towards the mixture is commonly expressed using the observed solute
rejection coefficient [31], [32]. This coefficient quantifies the membrane's effectiveness in
separating the solute from the feed solution and is defined as a percentage as follows:

C |
R=100x(1— op ) W
Cr

Where, Cf (mg.L™") is the solute concentration at the feed membrane interface, C#{mg,Jl™") is
the permeate solute concentration [33].
The permeate flux is determined using the following equation [34]:

R

Jp =3

Where O, is the volumetric permeate flux (m*.s), and S embrane's active
area (m?).

The Spiegler-Kedem model, based on irreversible amics models, provides a
straightforward framework for describing solute trangsport R@@oth R® and NF processes [35].
wilge interactions between solute
assumption that water flux (J,) and
pettively, stemming from chemical
c mocl degVes equations relating these fluxes to

g thgse plgfiples, the equations provided by Kedem

potential gradients across the membrang
membrane coefficients [14]. By integgati

efficients include hydraulic permeability (L),
ient (o) [36]:

iy + LijFs 3)
Js = LjiF, + Lj;Fs (4)
i are phenomenological coefficients.

imate operational equations of the nonlinear Spiegler-Kedem model are

Jo = Lp (AP — oAl (5)
Js = Ps(Cp — Cp) + (1 —0) J,Cpy (6)

AP represents the transmembrane pressure, while A77 indicates the difference in osmotic
pressure across the membrane (bar). C,, (mg. L!) is the solute concentration at the membrane
surface. Lp stands for the hydraulic permeability of the membrane (L.h"!.bar). o represents the
reflection coefficient, a dimensionless quantity. P; signifies the solute permeability (m.s™).

The product (6.411) as the initial pressure, also referred to as the critical pressure, denoted
Pc= 0.411. The reflection coefficient ¢ serves as an indicator of the membrane's relative
permeability to a specific solute: o = / signifies complete exclusion of the solute, whereas 6=0



implies the membrane lacks selectivity [38]. Integrating [eq. (5) and eq. (6)] with eq. (1) and
considering the limit conditions of the problem (C,, = Crfor x = 0, and C, = C, for x = 4x)
results in [eq. (7) and eq. (8)] [39]:

C 1-F (7)
R=1-—-P= u
C f 1—oF
. 1 - 9)J, ®)
= exp P
Where F' is a dimensionless flow parameter, and Ax is the membrane thic S 40],

[41].

Measurement and Calculation of Key Parameters

serves as a vital
e flow (O, (Lh)) to

The second parameter of interest is the recovery rate
indicator of process efficiency and was calculated as tha
feed flow (Qp (1.h™)), expressed as a percentage:

9)
The third parameter of interest 4 ion (R%). This metric is crucial for

evaluating the effectiveness of the in removing salt from the feed water. Salt

Particle swarm optimi
The PSO algorithimgmigshiae

applications in variof @
network training g

flocks of birds lo
In the 1

afeorithm's idea came from simulating the social behaviour of

king far¥god [45], [46].

of the PSO algorithm, each bird is considered a starting particle,
potegt™80lution in the search space. These particles move across the search
e tifihe [47]. A position vector and a velocity vector are required in order to
jcutar particle. the former vector depicts the problem's solution, while the latter
the location updated in the subsequent iteration [47]. According to the value
function, each particle continuously tracks the optimal position of both the
nd the entire swarm in order to determine the best solution in the PSO algorithm
(Figure 1a). The i-th particle's updated position and velocity in the (¢ + 1)-¢h iteration according
to the following two formulas [46]:

Xi(t +1) = X,(6) + V(£ + 1) (10)
Vi (¢ + 1) = whi(£) + Cyry (Phesty(t) — X;(©)) (1

+ Cyr, (Ghest;(t) - X;(1))



Where X)i(t) and 17;(1:) represent the position and velocity of the i-¢th particle in the ¢-th

iteration. Pbest;(t) and Gbest;(t) denote the best position of the i-th particle and that of the
entire swarm, respectively. ¢ and ¢ + / are the #-th and the (¢ + [)-th iteration, respectively. r/
and r2 signify the uniformly distributed random numbers in [0,1] at each iteration. w is the
inertia weight controlling the search space scope, while C; and C> denote the individual and
social factors influencing particle velocity [42]. The flowchart for the basic PSO algorithm is
shown in Figure 1b.

| Specify the parameters for PSO |

Gbest;(t) | Generate initial population
v Gen=1
4G Time domain 51mulat10n
Cary (Gbesty(6) — Xi(o) -— Xi(t+1) ]

Find the fitness of each particle
in the current population

€47y (Phest; () — X; (z)
pdate the particle position

s and velocity using equation
Xl(t+1) and V1+1(t+1)
()

of the standard PSO algorithm.

Pbesti(t)

(@)

Figure 1. The motion of particles (a

The PSO algorithm was utilized tggagtimige th. ameters o and Ps, crucial in membrane
modelling. These parameters charact@i e imperfections and significantly impact its
performance. Leveraging PSO gi#éws ate estimation of these parameters, considering
concentration-dependent behavigu ancing the precision of membrane transport
phenomena modelling. Thg ogasal approach not only improves model accuracy but
also contributes to advaa brane technology and process optimization.

Grey wolf optipaiga e
The GWO, if c gy Mirjalili in 2014 [48], is a swarm-based algorithm inspired by
U til’lg t

havior of grey wolves [18]. Unlike PSO, GWO is more memory-
c vector of position and retaining only the three best solutions [49].
izes the population of potential solutions into four hierarchical layers
e Alpha (o) wolf symbolizes the best solution found, leading and
search. The Beta (B) and Delta (3) wolves represent the second-best and
e%solutions, respectively, contributing to the balance between exploration and
[51]. All other possible solutions are considered as Omega (®) wolves, which are
the least dominant and explore extensively to ensure diversity and prevent premature
convergence. Through iterative position updates, GWO mimics wolf pack dynamics to
efficiently converge toward the optimal solution, thereby advancing the search process [52].

efficientutlizing
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Figure 2. The social hierarchy of grey wolves, where dominance progressively decreases from the
highest rank downwards

GWO is based on three key steps: encircling, hunting, and attacking prey
encirclement phase, wolves gradually close in on their target, a strategy mi
where search agents progressively converge towards the optimal solutiongfig

o )}
PUREE . SRR

o »

tatiogof whlves encircling their prey

!

ent by considering two points within an n-
the'gosition of one point relative to the other. The
n by [18]:

dimensional search space and
mathematical model for encirc

p(©) = X, (0)] (12)

Wt+1) =X,(t)—AD (13)

Whetg, X (1 + esents the subsequent position vector of the wolf at iteration 7+/,
while X, ifieslits current position vector at iteration ¢, and X, () is the position vector of
the offition). The coefficient vectors Aand C, along with the distance vector D
we woll and prey, influence the wolf's movement. The calculation of vectors Aand C

is dagord [eq. (14) and eq. (15)] [18]:
A=2d7 —d (14)
C=27 (15)

The variables 7; et 7, are derived from the random vectors within the range [0, 1], whereas
d is a vector with identical elements. To simulate the encircling behavior, the value of its
elements gradually lowered from 2 to 0 throughout iterations [52].

The hunting phase in GWO simulates the collaborative effort of wolves to locate and
encircle prey. Alpha, beta, and delta wolves, representing the top three solutions, guide the
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pack towards the optimal solution. These leaders, considered to have a superior understanding
of the search space, direct the remaining wolves (omega) in their pursuit [51]. By following
the positions of alpha, beta, and delta, the wolves gradually converge towards the potential prey
position, mimicking the encirclement behaviour observed in real wolf packs.

The mathematical model of an individual grey wolf tracking the location of its prey is
described as follows [52]:

Dy = |C, x X, — X| (16)

Dp = |C, x Xg — X| (17)

Ds = |Cs x X5 — X]| (18)

Where Ba, BB’ and 55 denote the distances between a, f and 0 a % duals,
respectively; X s X 5, and X s denote the current positions of a, ff ang D ; 51, 52 and

1ons simulate the

53 are random vectors, X is the current location of the grey wo ¢ :
search process [52].
A (19)

(20)

21

itigns of@lphd, beta and delta wolves, respectively; /Tl, A 2

ictions of eq. (14). {[eq. (19), eq. (20) and eq.
of w individuals in the wolf pack toward a, f and
pdate position of @ [52].

1) 1)? +1)? +1)? (22)
37t T3t 3
lgori new solution is randomly positioned within the regions defined by

deltl, and updated based on these three best solutions, as shown in Figure 4a.

etaheuristics algorithms, GWO stands out due to its simplicity, efficiency,
aintain a suitable equilibrium between diversification and intensification,
lied in various engineering domains [51]. The flowchart for the basic GWO
shown in Figure 4b.

The GWO algorithm was employed to fine-tune the parameters ¢ and Ps, which are pivotal
in membrane modelling. These parameters describe membrane imperfections and have a
profound influence on its performance. By leveraging the collaborative strategies of alpha,
beta, and delta wolves, GWO identifies the optimal parameter values, which enhance the
accuracy of the membrane transport phenomena and contribute to significant advancements in
membrane technology and process optimization.



| Initialize grey wolf population |

¥

|Keep the best three wolves a, B, §|

L% ’—b{ Update grey wolf position |
( ‘.R \I A | Update o, A and C |
WD / ,r" Dominant Wolf and
‘.\\\B / /D ' (44 the optimal selution *
e P .
* / @ B Secoud-In-command |Calculate fitness of all orev wol\-'esl
\move [ and the second-best
. S0 / solution T
n— Ny ~ Third leader and the -
PR n ' e thiril-best solution | Update fitness and location |
. 5 N4 Pe T W
| 'a/(é' il @ W owerbuneen
e C;." . Estimated position
- Omega of the Prey
(2) (b)

Figure 4. Position updating of the omega wolf, based on the posit f the tRree feading wolves

(a), flowchart for the basic GWO algorg

Models Implementation and Evaluation
rithm$ in conjunction with the
Spiegler-Kedem Model (SKM) were implemente aluatd to optimize salt rejection in
NF and RO membranes. The two algorithms i 80 and GWO, each offering unique
advantages for enhancing the predictive a iency of the SKM, are shown in

Figure 5.

The implementation SKM-PSO 1 WPthe initialization of input data, which is
processed through the Spiegler-Kede enerate initial predictions. These predictions
undergo an error evaluation ph idin@ necessary feedback to the PSO algorithm. The

them, updates their positions, and iteratively
izes the SKM parameters (¢ and Ps). This optimized
redictions.

follows a parallel structure. Input data is fed into the
initial predictions, followed by error evaluation. The GWO

searches for the best soluti
solution is then used to

-

performance. The integration of PSO and GWO with the Spiegler-Kedem
comprehensive approach to membrane modelling, leveraging the strengths
tic optimization to enhance the accuracy and efficiency of salt rejection
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Input Variables
\d

Spiegler-Kedem Model (SKM)

Predictions [Optimized Predictions
i
Initial Predictions Optimized Predictions
Error Calculation

@cle(PSO)IWoIf(GWO) InitializD Optimization

(o, Ps)

Error as Input llnitialization
@clemsovwmnewm EvaluaticoD

ﬁpdat‘e/Evaluation
@Ie(PSO)/WoIf(GWO) u@

Figure 5. Implementation and optimization frameworks fi

Best Solution

Best Solution (o, Ps)

nd SKM-GWO models

f th&SKM-PSO approach are:
, the root-mean squared error
ash-Stheliffe coefficient (NSC), and
iese indicators are given by [53],

The statistical indicators used to evaluate the performa
the mean absolute error (MAE), the mean squared

R-squared values (R?). The equations used §
[54]:

(23)
Rpredl|
(24)
exp)
i (25)
— i= i ;
Q) i
RMSE (26)
NOF = |——
Rexp
2 27
NSC =1 -— n=1(Rexp,i - Rpred,i) (27)
n —
l=1(Rexp.i - Rpred)
28
R?=1-— ?zl(Rexpi - predz) ] (28)
1(Rexp, exp)
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The coefficient MAE provides an indication of the average absolute error of the model,
regardless of the direction of the errors. A lower MAE indicates better model performance. The
MSE provides an indication of the spread of errors, giving more weight to larger errors due to
squaring. A lower MSE indicates better fit between the model predictions and the actual data
[29]. The RMSE provides a rating for the model error and shows a perfect similarity between
the values that are observed and those predicted, in case of being equal to 0. For NOF, when it
is less than 1, the model error is said to be negligible, and the NSC ranges from -c to 1, a value
close to 1 mark that the model is well performed.

DATA, RESULTS AND DISCUSSION

membranes employed in the experiments were detailed, along with the

measuring and calculating key performance parameters.
Figutg n important
profimity to brackish
ith g

)\ salinity, which
a r residents [26]. The

Study area: Tan Tan city, Morocco

Tan-Tan City, situated in the arid, water scarce south of Moroccd
site for understanding the challenges of water desalination
water sources [24]. The city experiences significant prob
impacts both agricultural activities and the availability o
primary source of water in Tan-Tan comes from the nea aa and coastal aquifers,
which are prone to saltwater intrusion due to over-gggction'agd climatic conditions.
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Figure 6. Study area: Tan-Tan City, Morocco

Tan-Tan is emblematic of the larger regional challenge of balancing water needs for a
growing population and agricultural demands with the limitations posed by saline water
sources. The arid local climate, characterized by limited rainfall, intensifies the water scarcity
challenge. As a result, advanced desalination techniques, such as NF and RO, are indispensable
for maintaining a sustainable water supply. In an effort to identify the most suitable and cost-
effective solution, particularly concerning energy efficiency for a long-term water supply for
Tan-Tan City, and to gain proficiency in new technologies [55], ONEE (Office National de

Journal of Sustainable Development of Energy, Water and Environment Systems 11



I'Electricité et de I'Eau potable) carried out technical and economic studies on various thermal
and membrane technologies. These studies also examined energy sources such as fossil fuels,
solar power, gravity, and nuclear energy, while considering their long-term environmental
impacts.

Tan-Tan faces significant challenges, particularly in managing the high levels of Total
Dissolved Solids (TDS) in the water, which often exceed WHO safety standards for drinking
water [27]. Addressing these issues necessitates the deployment of effective desalination
technologies and strategies for sustainable water management. Pilot studies and research in
Tan-Tan are focus to optimizing membrane technologies to lower salinity levels and ensure a
consistent supply of safe drinking water.

This description provides a detailed overview of Tan-Tan City as a study site, undfrscoring
the critical role of desalination research in addressing the dual challenges of water Segrcigyy and
salinity.

Characteristics of the feed water

The characteristics of the feed water of Tan Tan city (Table 1) can
The pH measurement of 7.9 indicates that the water is slightly alk
chemical behaviour and compatibility with certain materials. gake e 1S an important
parameter to monitor as it can influence various water propertt c@ e . With a recorded
temperature of 27.0°C, the water falls within a typical ra : conditions.

The concentrations of specific ions in the water, s [

ppm), potassium 19 (ppm), and
jtion. These ions play crucial

calcium 270 (ppm), magnesium 115 (ppm), sodium

roles in various chemical reactions and
desalination. Tablel shows that several par
Health Organization) and Moroccan sta
concentrations Na+, SO42-, and CI-
Overall, these detailed analytical

feed water Moroccan standards WHO standards
27 - 25

7.9 6.0-9.2 6.5-8.5
3300 <1000 <1000
1287 <250 <250
20 <50 <50
1.1 1.5 05-1.5
500 200 250
Ca2+ (ppm) 270 <500 <270
Mg2+(ppm) 115 100 <50
Na+ (ppm) 595 <200 <200
K+ (ppm) 19 - 10

Characteristics of Nanofiltration and Reverse Osmosis Membranes
In this study, three nanofiltration membranes (NF90, NF200 and NE90) and one reverse
osmosis membrane (BW30LE) were used. Table 2 outlines the key characteristics of the

membranes utilized in the experimental setup. The membranes selected for this investigation
vary in their Molecular Weight Cut Off (MWCO) values, which determine the size of the



particles or molecules that can pass through the membrane. Additionally, the surface area of
each membrane module is provided, indicating the available area for filtration processes.
Notably, most of the membranes are made of polyamide, a commonly used material known for
its robustness and effectiveness in membrane filtration applications, the NF200 membrane is
an exception, which is made of cross-linked poly piperazine Amide with sulfonated functional
groups.

Before filtration, the membranes were immersed in ultrapure water for 24 hours at 4 °C to
eliminate preservatives. Each membrane was then pressurized with pure water for 15 minutes
at 4 (bar) until the permeate conductivity stabilized below 1 (uS/cm). Following each run, the
membranes underwent cleaning procedures using alkaline and acidic solutions as per the
manufacturer's recommendations. These cleaning protocols are necessary for
membrane performance and prolonging their operational lifespan by removing fo
and restoring permeability. Overall, the selection and characterization of membyfit
steps in designing and conducting membrane filtration experiments, ensuri

reliable results in salt rejection studies.
Table 2. Membranes Characteristics

Membrane Manufacturer polymer M
BW30LE Dow (Filmtec) Polyamide

NF200 Dow (Filmtec) POl Piperazine Amid

sulfonated

NE90 Saehan 54 7.6

NF90  Dow (Filmtec) 3 7.6
Salt rejection efficiency is a critical a e filtration systems, particularly in
applications such as water purificatiorf®a i n. By analyzing the effects of key
operational parameters, valuable 1 e Fained into membrane performance and
selectivity, based on the availablggda® collegted From the literature (e.g., [24], [26] and [27]).
In this section, the research reilts rg8ented and a deep analysis of the findings was
conducted to explore howgf{fagt operating parameters affect salt rejection efficiency.

ters on salt rejection efficiency

erimental data of the Tan-Tan water permeate flux as a function
> for the four tested membranes.

a pronounced linear increase with pressure, which is a common
rane filtration processes due to the proportional relationship between
flux. For the NF membranes, the permeate fluxes were significantly higher
the RO membrane. This difference can be attributed to the larger pore size and

s tested, NFOO and NE90 achieved the highest fluxes. These membranes are
designed for high permeability, making them suitable for applications requiring high water
throughput. On the other hand, the NF200 membrane showed the lowest flux among the NF
membranes tested. This lower flux could be due to its design characteristics, such as a tighter
membrane structure or different material properties, which result in reduced water
permeability.
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The hydraulic permeability (Lp) of the saline solution was the slope of the
linear plot, while the x-intercept gave the critical press ¢ transmembrane
pressure equals the osmotic pressure. Table 3 provides a. f ti®Lp and Pc values for
all membranes tested with Tan-Tan brackish water.

The Pc of the RO membrane was approximate
nanofiltration membrane. This difference is a
correspondingly greater osmotic pressure dg
detected at pressures below 1 (bar). offer the advantage of partial
demineralization, which is linked to of osmotic pressure on hydraulic
permeability compared to RO membf@ancs. s exXpected since the concentration difference
across the NF membrane is lowergpestlting igred®iced osmotic pressure effects. Consequently,
NF membranes demonstrate
membranes.

g to tige times higher than that of the
(§ the Migher rejection rates and the

camplity (Lp) and critical pressures (Pc) to Tan-Tan water

Lp (m. s Bar ) Pc (Bar)

0.97 2.07
1.62 1.13
2.11 0.5
2.23 0.65

compr sive comparison demonstrates the efficacy of each membrane under consistent
operational conditions. In general, at a specific operating pressure and conversion rate, the
order of total salt rejection for the membranes studied was as follows: BW30LE > NF90 >
NE90 > NF200. As the pressure increases, the salt rejection improves because the higher
pressure enhances the selectivity of the membrane for water over salt ions. This is due to the
increased hydraulic pressure overcoming the osmotic pressure, which tends to draw salt
through the membrane. Consequently, at higher pressures, more water molecules pass through
the membrane while the salt ions are retained. However, at very high pressures, the marginal
gains in salt rejection can diminish, highlighting the need for an optimal operating pressure to
balance permeate flux and salt rejection effectively.
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Figure 8. Total salinity rejection at 15% Recove
Model application and parameter’s optimization result
The optimization process involved minimizing the obj which quantifies the
difference between the model-predicted rejection rat ] experimental data. By
iteratively adjusting the model parameters, PSO andgGWO &iciently searched the parameter

cost function. The objective
be formulated as follows:

L (29)
. _ exp re exp pre 2
0bjF () psojewo = Z [(]i ) + (R = R{"(a,Ps)) ]
i=1
Where J? and J#™ are mental and predicted water fluxes, respectively. R#" and

R?P" are the experimental & t rejections, respectively. The variable x represents
e PSO and GWO algorithms adjust to minimize the

Both optimiZ@TIOTNCE s demonstrated robust performance in calibrating the SKM
parameters, % Mpdel's accuracy and reliability in predicting membrane behaviour
under varioffs operdng c@nditions.

i ows Yhe predicted total salinity rejection percentages at 15% recovery rate as a

functt flux for four experimental membranes, using the SKM-PSO and SKM-
and the experimental data for comparison.
-PSO and SKM-GWO predictions demonstrate the simulated rejection
erived from the Spiegler-Kedem Model parameters optimized using PSO and
GWO orithms. These predictions serve as theoretical representations of membrane
performance, aiming to capture the underlying mechanisms governing salt rejection. Generally,
a consistent trend is observed between the experimental data and the SKM-PSO, SKM-GWO
approaches predictions across all membranes. This consistency indicates that the optimized
Spiegler Kedem model adequately captures the salt rejection behaviour of the membranes
under investigation.

As permeate flow increases, the rejection percentage tends to be asymptotic in the range of
measurement. This phenomenon is expected and can be attributed to concentration polarization

effects and membrane fouling, which become more pronounced at higher permeate fluxes.
Noticeable differences in rejection percentages among the different membranes, both in the

)



experimental data and model predictions, highlight variations in membrane properties, such as
pore size, surface charge, and selectivity, which influence salt rejection efficiency.

Both SKM-PSO and SKM-GWO approaches effectively capture the complex transport
phenomena during membrane filtration. The agreement between the experimental data and the
SKM-PSO and SKM-GWO predictions reinforces the reliability of the models in predicting
salt rejection behaviour under varying operational conditions. The close alignment between the
experimental data and the models demonstrates the robustness of the optimization techniques
in finetuning the Spiegler-Kedem model parameters to match experimental observations.

1.0

0.8

BW30LE Experimental data

|
0.6 1 O NF200 Experimental data
X A NE90 Experimental data
& v NF90 Experimental data
0.4 -
0.2 — .
—— Optimized Spiegler-Kedem model (PSO)
----- Optimized Spiegler-Kedem model (GWO)
0.0

Furthermore, the optimized pa,
reflection coefficient (), obtai
compiled in Table 4. These p
play a significant role in
conditions. On the othe

accuracy. Notah ) WO model demonstrates superior accuracy and faster
convergence _raté pard to the SKM-PSO model, highlighting its effectiveness in
optimizing D dem model parameters for predicting salt rejection in membrane-
based se

Table 4. Parameters optimized using methods (PSO and GWO)

Algorithms PSO GWO
Parameters o Ps (x10%) o Ps (x10%)
BW30LE 0.89 0.2 0.91 0.28
NF200 0.38 6.29 0.35 4.86
NE90 0.73 2.27 0.74 2.52
NF90 0.82 1.05 0.85 1.51

The statistical calculations yield favourable results, with a low RMSE, indicating close
agreement between predicted and observed values. Additionally, the NOF registers below 1,
affirming the model's efficacy in fitting the data. Moreover, the NSC near 1 underscores the
model's capability to closely replicate observed values. Furthermore, the MAE and MSE



complement these findings, contributing to the evidence that the approach performs effectively.
For all membranes, the R? values obtained using the SKM-PSO algorithm are consistently
lower compared to those obtained with the SKM-GWO algorithm. This indicates that the SKM-
GWO approach provides more accurate predictions of salt rejection percentages (Figure 10).

BW30LE Membrane 0.40 NF200 Membrane
@0.92 q = Pred¥cted PSO ~
s o Pfed1cted GWO . s 0.36- m  Predicted PSO
H Linear fit PSO o <oty s o Predicted GWO
£ Linear fit GWO o F -é Linear fit PSO
‘% 0.88 g ‘%0.32 i Linear fit GWO
1™
= =
G pso Gwo|| g ) PSO  GWO
E‘ 0.84 - MAE 102 =1.48 1.22 g 0.28 - MAE 102=1.19 091
% . MSE 10%=3.75 249 _E ] MSE 10%=223 121
s RMSE =0.02 0.0l o RMSE =001 0.0l
~ NOF =002 001]| ~0.244 NOF =004 0.03f§
0.80 5 NSC =0.69 0.78 o =0.78
R2 =0.74 0.8l .
T T T T 0.20 T T
0.80 0.84 0.88 0.92 0.20 0.24 0.28
Observed salt rejection (%) Observed salt rejé
0.76 0.88 T
NE90 Membrane NF90 Membranew
@ = Predicted PSO o \’? \ \
< 0.724| o Predicted GWO 2 0844 | ® Predicted PSO 5 ©
= Lincar fit PSO y = o Predicted GWO \i "
'E Linear fit GWO o) E Linear fit PSO
S 0.68 4 : < i
= = 0.80 - Linear fit GWO z
St S ]
= =
2 0.64 - Pso Gwol{ & PSO GWO
T MAE 102=071 047|| g \ MAE 102=1.77 1.19
;5 MSE 104=0.84 0.49 MSE 10%=4.86 2.49
g 0.60+ RMSE =001 0.0l RMSE =002 0.02
A~ o NOF =0.01 0.0l NOF =0.02  0.02
0564 NSC =089 092 v ° NSC =067 0.68
: R? =098 099 R? =093 096

0.72 0.76 0.80 0.84 0.88
Observed salt rejection (%)

lated Ws. measured salt rejection with statistical criteria of
thods for all membranes at 15% Recovery Rate.
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Observed salt rejection (¢

Figure 10. Parity plot comparidg ca
parameters estimated using P

a rapid assessment of salt rejection in Tan Tan City

Finally, the both mod¢ €
0 er supply against excessive salinity. They calculate salt

and can help to ensur:
rejection adequatel roygures where field measurements are unavailable and can be
considered as a t ort¥ecision-making.

ts a comprehensive investigation into salt rejection modelling using NF
By integrating the Spiegler-Kedem model with PSO and GWO
st framework has been achieved for predicting salt rejection behaviour with
racy and precision. Predicted results by models showed good agreement with
rements. The model's performances were assessed using six different statistical
criteria MAE, MSE, RMSE, NOF, NSC, and R? the both models were satisfactory in predicting
salt rejection of the Tan-Tan city water. However, the comparison between the SKM-GWO
and SKM-PSO approaches showed that the former performed better in terms of accuracy and
reliability. Furthermore, experimental results indicate that NFO0 membrane demonstrated
higher retention capabilities, with total salinity retention between 75-90%. The developed
models offer practical implications for water treatment plants, particularly in regions prone to
salinity issues. They provide a valuable tool for assessing and optimizing salt rejection
processes, thereby ensuring the safety and sustainability of water resources. On other hand, by
continuing to innovate and refine such models, the way can be paved for more efficient and
sustainable solutions to global water scarcity and pollution challenges. The model outputs



provide a foundation for future research aimed at optimizing membrane desalination processes,
improving predictive accuracy in salt rejection modelling, and advancing the integration of
artificial intelligence techniques, particularly machine learning, which use a minimum amount
of input parameters. These models can contribute to the development of desalination strategies.
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NOMENCLATURE
Symbols
R Membrane rejection
Jp /' Js /Jv Permeate flux / Solute flux / Water flux
Cp Solute concentration in the permeate
cf Solute concentration in the feed solution
Cm Solute concentration within the membrane
Op Volumetric permeate flux
S Membrane's active area
Lp Hydraulic permeability of the membrane
AP Transmembrane pressure
All Difference in osmotic pressure across th&@emOagn:
Ps Solute permeability .
Ax Membrane thickness (m)
o Reflection coefficient dimensionless
Y The recovery rate (%)
ObjF(x) The objective function dimensionless
Ji#P/ JiP* The experimental / pgélicteNyaterfflux (m.s1)
Ri®®/ R{" The experimental 1 sa ection (%)
Abbreviations
NF
RO
PSO
GWO
SKM
TDS iss@lved Solids
ealth Organization
iF jective Function
O ational Office of Electricity and Potable Water
MW olecular Weight Cut Off
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