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ABSTRACT
Clean water is a scarce resource, fundamental for human develgp g. Remote
sensing techniques are used to monitor and retrieve quality es rs bodies. In situ
sampling is an essential and labour-intensive task with high Iternative, a large
water quality dataset from a potabilization plant cag al to this step. Combining
laboratory measurements, given by a water treatment t Argentina, and spectral
data from Sentinel-2 satellite platform, several al oposed, trained, and compared
for turbidity estimation at the plant inlet water, e highest performance metrics
were from a random forest model with a ¢ ation close to unit (0.913) and
the lowest root-mean squared error (143: i bidity units). The most influential
spectral bands were identified by gl i ce and partial dependencies profiles

techniques. Maps and histograms wefg made to ex
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INTRODUCTION

Ensure wate one of the Objectives of 2030 Agenda for Sustainable

Developme chieve this, satellite remote sensing techniques can be applied to
study and nonitoring ater bodies, since it’s possible to retrieve spectral data from large
regions O arth§urtace. Applied remote sensing can be used to estimate biophysical water
para otal suspended matter [2], chlorophyl-a [3], Secchi disc depth [4] and

se regression models, the algorithms, can be relatively simple mathematical
6] or more complex approaches, like in machine learning methods [7], which
ning of model specific parameters. Remote sensing techniques can be applied for
researc a wide range of environmental topics, such as land pollution [8] and glacier retreat
[9], among others.

Sentinel-2 (S2) is a spatial mission developed and operated by the European Space Agency
(ESA), consisting of two platforms: S2A and S2B, launched in 2015 and 2017, respectively.
The MultiSpectral Instrument (MSI) is the optical sensor mounted in S2, with 10 m of
maximum spatial resolution, spectral range of 440 nm to 2200 nm, and 5 days of revisit time
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for the constellation. S2 database is free and open access, available from the Copernicus Open
Access Hub. S2-MSI has been used in water monitoring and parameter estimation of
physicochemical properties such as colour of water [10], chlorophyll-a concentration [11],
coloured dissolved organic matter (CDOM) [12], turbidity by band ratios [13] and to detect
microplastic pollution [14]. The generated products from S2-MSI are reliable [15] due to a low
radiometric uncertainty [16].

The region of interest is in North-East Argentina, in Chaco Province. This area presents
several studies regarding fires [17], floods [18], vegetation cover [19] and biodiversity [20].
Nevertheless, water quality studies with a remote sensing approach are scarce. Parand river is
studied by satellite spectral data, but mainly in the North (inside Brazil borders) or South
(Argentina middle region) basins.

Machine learning techniques can find complex relationships between dat
combination of machine learning and remote sensing data is a valuable tool ¢
quality indicators and its spatiotemporal distribution [22]. Considering this

(Moderate Resolution Imaging Spectroradiometer) and long-short t
The advancements in algorithm development, data availabili

to be consumed by regular population.
operation can be stalled if high values
at risk [27].

The treatment plant contacte

pres@nt study needs to adapt its potabilization process
diments presents in the water. Monitoring and
understanding the spatlal ter turbidity in the inlet river is a valuable input to
the overall system sincg

Remote sensing p egequite regular in situ water sampling to correlate spectral data
with physicochepameg . ollect said samples is labour intensive, costly and time
consuming [28]. i
alternative 1 atfon that usually are located in a single site in a water body, with

fance. The internal sensors in buoys require frequent calibration due

®Efforts had been made to develop [31] and deploy [32] low-cost buoys in
ents. An optimized system design is fundamental to decrease production,

nt plants laboratories regularly measure water properties, as part of the usual
operation process. These datasets are a valuable tool to complement remote sensing techniques,
replacing in situ sampling, as water parameter source for the algorithm development.
Potabilization plants databases collect historical measurements, often several times a day, that
can be applied to spectral imagery collections to elaborate regression models for water quality
estimations. A traditional water sampling program for a large time scale monitoring would
represent monetary, time and logistic challenges [34].

Remote sensing has been incorporated into water monitoring in a treatment plant [35],
calibrating traditional bands ratio regression models to estimate chlorophyll-a and turbidity,
using laboratory sampling data from the plant operation.



In this study, daily water turbidity values were given by the MAGR water plant, replacing
conventional in situ water sampling. Using S2-MSI images, processing level L2A, surface
reflectance (Rg) was extracted for the water inlet location, at surface level. A database of
spectral values and turbidity measurements was built to train several regression models,
including traditional single band models, and a sophisticated and advanced machine learning
approach by a random forest (RF) algorithm. The model with the best performance metrics was
selected and turbidity maps and histograms were made for further study its spatial distribution.

To understand the spectral bands effect in the whole model, two techniques were applied:
global feature importance and partial dependencies profiles. The most influential spectral bands
were compared with the results from different authors to support the found model.

Water characterization was performed, and several factors are discussed to igforporate
context to the obtained results.

MATERIALS AND METHODS
The area of study is described, mentioning the main rivers in the reg nsing
and laboratory data, their characteristics, and the mathematical Wwdology are
included in this section.
Area of study
The Parana River is the second longest river in Sout ing through 4000 km
[36]. In Argentina, is the natural boundary of multlple pr , roqghing the Rio de la Plata,

into its exit in the Atlantic Ocean. Paraguay River m [36], is a tributary of Parana
River in its middle basin. The Bermejo River, ribu [37], is the main sediment
source in the Parana-Paraguay confluence. D, < 1gh olids presence 1n Paraguay River,

oncentration [38].

The Metropolitan Area of Gran ) is an urban region in Chaco Province,
North-East Argentina. It’s compgge citl®s, including Resistencia, the capital city of
Chaco. MAGR has a populatio inf@gbitants, according to the last census [39]. Parana
River has a large impact ing i ¢ industry, tourism, recreational activities of the
local communities, and @ route [40]. The water source for the MAGR
potabilization plant i i

est is shown in Figure 1. The inset image corresponds to
ince (pink), MAGR location (white dot) and Parand River

plant (yellow triangle) in Barranqueras city and main rivers.
(red star), located in 58°5423"W 27°28'20"S, was selected over the

ant sections. In this chamber, samples are collected and delivered to the in-site
0 measure a series of parameters, mainly turbidity, pH, electrical conductivity, and

alkalinity.

Laboratory data

Daily measurements were given by the in-site laboratory at the water treatment plant [41],
located in Barranqueras city, from 2017-01-01 to 2021-09-03. In this time span, 1732
observations were recorded. The parameters and their units were: pH; electrical conductivity,
in micro siemens per centimetre [S/cm], alkalinity, as parts per million of calcium carbonate
[ppm CaCOs]; and turbidity, in nephelometric turbidity units [NTU]. Alongside these data,
supplementary water samples were taken to assess more sediments related parameters, such as
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Figure 1. Region of study, indicating 9
Inset: Chaco Province relative to i @location and Parana River extension.

total suspended matter (TSM), i matter (TDM), and total matter (TM). These
parameters, measured in parts i ], are related since TM is the sum of TSM and
TDM. In total, 28 compl s were collected, from 2021-08-24 to 2022-12-07.
The sampling was mad i
bottle.

The physicocesgi applied to measure pH, conductivity, alkalinity, turbidity,
TSM and TM wg ", 2510-B, 2320-B, 2130 B, 2540 D and 2540 B, respectively,
according t ods techniques [42]. TDM was calculated as the difference between

ssince products of platform S2A and S2B were used. Maximum spatial resolution
en available), 5 days revisit time, and 11 spectral bands were used. Bands B09 and
B10, at 945 nm and 1373 nm, respectively, were discarded since no surface measurement is
done at those wavelengths.

Copernicus Data Space Ecosystem provides complete, open, and free access to S2 products.
For the same period, 382 images were acquired. S2-MSI, processing level L2A, are
atmospherically corrected by Sen2Cor processor [43]. Using the quality assessment band,
QA60, the images with present clouds were discarded. This simple method was preferred over
more complex approaches [44], since QA60 band is a coded bit mask detecting clear sky, dark
clouds, and cirrus clouds. This band was acquired from the Sentinel-2 dataset in Google Earth
Engine platform [45].
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Table 1. Sentinel-2 spatial and spectral resolutions of platforms S2A and S2B.

S2A S2B

Band Spatial Central Bandwidth Central Bandwidth
resolution [m] wavelength [nm] [nm] wavelength [nm] [nm]
60 442.7 21 4423 21
10 492.4 66 492.1 66
10 559.8 36 559.0 36
10 664.6 31 665.0 31
20 704.1 15 703.8

20 740.5 15 739.1
20 782.8 20 779.7
10 832.8 106 833.0
20 864.7 21 864.0
20 1613.7 91 1610.4
20 2202.4 175 218

After removing the dates with clouds over the study area,
continue the analysis.

—_ — OO
N,_‘>OO\1C7\UI-J>UJNP—‘

The satellite products were cropped around the ageg
spatial resolution of 10 m. The Rg values ext
around the point near the plant water entra
pixel value was the mean of the individua

of int§est, then resampled to the same
ma®e using a 3x3 pixel window
jueras River (Figure 1). The final

Modelling
As a preliminary step, the rehg

NDTI — B04 — B03 )
~ B04 + B03
M e learning techniques were applied to improve traditional methods for parameter

retrieval [48]. RF operates by an ensemble of decision trees [49], each one trained by a subset
of the whole data. RF can manage many predictor variables and maintain low levels of over-
fitting [50], a negative aspect in modelling.

RF modelling used all spectral bands available (Table 1), since this method is appropriated
to find non-linear relationships between multiple predictors. To improve the performance of
RF, a tuning step was applied to obtain the best arguments, the hyperparameters, required in
this model. The tuned hyperparameters were the minimum number of samples taken from the
dataset to form a node in a decision tree (min,) and the number of predictors that will be
sampled (mtry). The ‘trees’ hyperparameter was fixed at 1000 units. Both steps of sample



observations and predictors selection are random, across all trees. The final turbidity estimation
was an average value of all tree’s individual estimations.

The tuning process applied was made by the racing technique [51]. This technique
evaluated the model in a subset of resamples obtaining the performance metrics, continuing
only with the hyperparameters that showed good results. Usually, racing techniques are faster
to compute than traditional methods, such as grid search [52].

To measure the model’s performance the metrics calculated were: Pearson’s coefficient of
determination (R?) and root mean squared error (RMSE). The following equations show the
mathematical expressions for these metrics:

Yici (i — x;)?

2_1_

SRR N AL <<)
RMSE — \/ e (i — x)? QQ (3)

n

Eq. (2), y; is the
o 1, and low RSME.

To produce a model, linear or RF, the dataset was sp arts: 75% of the samples
was used for training and tuning of the correspondingmg §¢ remaining 25% was used only
for testing and to finalizing the model, that is, to vers¥on of the model specification.
This methodology followed the best practices, diling [53].Since the original dataset
corresponded to a time series of turbidit g split corresponded to the most
recent dates. The training dataset was re -fold cross-validation

The performance metrics were ¢ the¥faining step only for the selection of the

best model. Once the selection w,
with new and later observatio
turbidity values were comp

el was evaluated using the testing dataset,
the final performance metrics. The estimated

Several maps showcas idig#spatial distribution were made applying the selected
model to S2-MSI pro anqueras River, for four different dates. The spectral
index MNDWI (modiyed abrmalized difference water index) was used to mask the water from
the scene [54]. od was used to identify the MNDWI threshold value [55].

acterigation results are summarized and discussed as a parameter time series.
Ant i nvironmental factors are mentioned to explain water quality. Model
i erparameters tuning are described. To evaluate spectral bands effect, two

mapgnd Bistograms.

Water characterization

The parameters measured by the water treatment plant are shown in Figure 2 as a time series
plot. The number of samples (n) is shown in the top right corner of each panel.

In 2019, Parana River scarce rains and drought caused an historic low level of water [56].
This can be seen in the steady increase in turbidity (Figure 2a) and conductivity (Figure 2d).
Conductivity from 2019 and forward started to be more disperse than previous years. Turbidity
presented yearly cycles, with high values at the beginning of each year, between January and
April-May, then followed by a low-turbidity period.
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Figure 2. Time series of measured watSr pagame 1d1ty, alkalinity, pH, and conductivity.

Main statistical values per p

er areggummarised in Table 2. Mean, median, standard
deviation (SD), initial and final€ampAi

atgand number of samples (n).
y dams’ operations [57] in the North basin (south

Brazil) being Itaipu dam (Rarag ) and Yacireta reservoir (Paraguay-Argentina), the
closest to the study arg

The main source in Parand river is due Bermejo River, a Paraguay River
tributary, creatinfg Wi turb®ity imbalance [58]. Due to heavy rains in Bermejo River

headwaters and April, a high sediment concentration is reached in Parana

eand May [57]. Said period corresponded with the turbidity cycles

Table 2. Statistical summary of measured water properties.

Parameter Mean Median SD Initial date Last date n
Turbidity [NTU] 280.7 89.8 3282 2017-01-01  2021-09-30 1732
Alkalinity [ppm CaCO3] 40.0 40.0 7.9 2017-01-01 2021-09-30 1732
pH 7.3 7.3 0.2 2017-01-01  2021-09-30 1732
Conductivity [uS/cm] 293.6 220.2 205.6 2017-02-10  2021-09-30 1690
TSM [ppm] 84.2 30.0 171.6 2021-08-24  2022-12-07 25

TDM [ppm] 195.9 166.8 100.8 2021-08-24  2022-12-07 26



TM [ppm] 281.9 209.5 212.1 2021-08-24  2022-12-07 25
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Figure 3. Mean spectral signatures per turbidity range, for w

The highest water flow in Parana River occurs between a arch, with values
over 30000 m*/s, with a mean of 17000 m?/s [61]. Th flow, land use and
hydroelectric development (by dam constructions) alte hy@gplogic characteristics of

Parané waters, thus affecting water treatment operagmg,in th&last decades [61].

pect ti relationship between them.
Figure 3 shows the spectral signatures of all o s in light grey lines. Grouping the
data observations by turbidity ranges, me e @furcs were obtained, in black lines.
As the turbidity range increased, the
an 1050 NTU.
nsitive to turbidity change, since the points
e position. Bands B05, BO6 and BO7 presented
to algorithms for turbidity estimation [5].

spectral signature response raised un,
Bands BO1, B11 and B12 (Fi

for different turbidity ranges re

the highest changes. These

Model selection

d t§estimate the inlet water turbidity for the treatment plant. The
predictors variabfi€s Wg d according to the model. For RF, S2-MSI bands shown in
Table 1 werguscd ors. Traditional linear models were produced by the following
variables: afl infcra® PBetween B06 and B0O7; individual bands B05, B06 and B08; and the
spectral ¢ aforementioned spectral bands were selected according to the results
from ¥

achievC@By the RF model.

R? for individual bands B05, B06 and B0S8, presented 0.693, 0.732 and 0.736, respectively.
In a similar work [5], also in turbid lakes, R? for the same bands were 0.83, 0.66 and 0.63,
respectively.



RF model was the selected model in the following analyses, since it presented the best
performance metrics, with the lowest deviations (RMSE) and highest correlation (R?). This
machine learning algorithm could capture the complex relationships between satellite spectral
data and turbidity values, more than the proposed usual regression models. A RF model with
proper modifications performed better than others machine learning options for turbidity
estimation [62].

The interaction model between B06 and B07 was the second-best model, combining bands
in the red edge, related to sediments in water [63]. In comparison, using single band linear
performed poorly. The NDTI index presented the lowest R? and the highest RMSE, unlike
other studies [64].

The tuned hyperparameters values and the main characteristics of the final RF gfodel are
shown in Table 4.

Table 4. RF model main characteristics and hyperparameters.

RF type Regression
Training observations 116
Variables
Trees
min,
mtry

After the model selection the last fitting
performance metrics were obtained by the te

so they have no influence on the modelli ere RMSE = 143.9 NTU and R? =
0.913, with 39 data points. Noted that th lu erent from Table 3, since those were
0

obtained from the training data set, a@ n

able 3. Regression models candidates and training performance metrics

Model characteristics Performance metrics

Specification Expression RMSE [NTU] R?
RF Turbidity ~ all bands 111.5 0.841
Linear model Turbidity ~ B06 + B07 + B06xB07 121.9 0.802
Linear model Turbidity ~ BO8 142.9 0.736
Linear model Turbidity ~ B06 145.7 0.732
Linear model Turbidity ~ B0O5 155.8 0.693

Linear model Turbidity ~ NDTI 218.7 0.296
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The comparison between measured and estimated observations in the testing split is shown
in Figure 4

The solid line represents the linear relationship between estimated and measured turbidity,
with a dashed line at 45°, for comparison reasons. Lower estimated turbidity values are closer
to the real values. For higher turbidity the deviations increased, with estimates being lower than
measured values, with the solid line below the dashed line. The outcome variable presented a
wide range, with many observations under 100 NTU, and measurements as high as 1100 NTU.

The measured and estimated turbidity values, for the validation dataset (Figure 4), are
shown as a time series plot in Figure 5. The crosses represented the estimations made by the
RF model; the turbidity measures were plotted as a solid line. The number of samples in the
testing dataset is shown in the top right corner.

The biggest differences between estimated and measured turbidity in Figure
the larger values, equivalent to Figure 4. The estimations followed the same

turbidity time series in Figure 2, with high turbidity in the beginning of the ye3
lower values in the middle and end year. Q

1200

R2=0.913 4
RMSE = 143.9 NTU y
n=39 /

Estimated turbidity [NTU]

0 300 600 900 1200
Measured turbidity [NTU]

Figure 4. Estimated and measured turbidity using the validation dataset.

Journal of Sustainable Development of Energy, Water and Environment Systems 10



1500 — Measured n=39
X Estimated, RF

1250

Turbidity [NTU]
R
O S
S S

N
S
)

[\
N
)

>S<X

0

Oct-2020  Jan-2021  Apr-2021  Jul-2021  Oct-2021
i @1 dataset.
Understanding the random forest model

The complexity of a RF model is difficult to exg he explicit form is not as clean
as a simpler model, i.e., linear model. The qature ®nportance is an explanatory
technique that assists in understanding the drj of a RF, aggregated in the entire
training observations.

The results of the global feature 1
spectral band, is shown in Figure 6.
in the model due to the perturbatig

Figure 5. Time series of estimated and measured turbidi

ased on the notion of the overall change
riable [65]. A permutation-based approach

49]. Spectral band B07 presents the most effect
® the boxplot had the highest RMSE (104.9 NTU).

perturbation of't
line represents t

udytial bands were in the range of 704 nm to 830 nm, with the least influential
m angd 300 nm. A similar result, was found applying the same method in the
: L [67], but the importance order was B0OS5 (the highest), followed by B07

: J@gmuch lesser impact on the overall model. The vertical dashed
‘base ‘

ongside a single explanatory variable [65]. According to the global feature
importance technique, BO7 was the spectral band that had the highest effect on the RF model.
For this band the partial dependencies profile was obtained and is shown in Figure 7a.
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The thin grey lines in Figure 7 correspond to 100 ran C bservations from the
training dataset. The black line indicates the mean. The € f (Figure 7a) on turbidity

estimates was constant until Rg = 0.12, then startedgig incred§e until its highest effect at Rg =

NTU. For comparison, Figure 7b correspon
the lowest feature importance as mentio
profile of this band was constant, that i
of Rg from BO1 values. This result w

esented no change in the entire range
Figure 3 and Figure 6.

The obtained RF modelgag i e spectral values from Barranqueras River to

evaluate the spatial turbid 19) 4 aps for four different dates from 2020 are shown
in Figure 8.

The yellow triang¥g ‘ -centre of each panel represents the water plant location. A
water mask wa i p region of interest to only extract pixel values from the

Barranqueras Ri
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Figure 7. Partial dependencies profiles for spectral bands BO7 and BO1.
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Figure 8. Barranqueras i s for four different dates.

a wide dispersion. Figure 8b (z &) afld Figure 8c (2020-08-24) presented a narrower
turbidity dispersion, thus th homdGgeneity. For the former date, high values were
estimated; for the latter, 1d i
1 bidity spatial distribution, histograms were plotted, as
seen in Figure 9, to sh Agstimations dispersion alongside Barranqueras River. The bin

width was set in

\ )}

a b.
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Figure 9. Turbidity histograms per selected dates, as seen in Figure 8.
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Figure 9a (2020-01-07) presented relatively lower values, with a wide dispersion. The
median turbidity was 117 NTU. High values and a narrow dispersion were observed in Figure
9b (2020-04-11), with an 889 NTU median. The lowest turbidity distribution was obtained in
Figure 9c (2020-08-24), presenting a single peak at 69 NTU. Finally, in Figure 9d (2020-12-
22), the values increased until a 128 NTU median and a wider dispersion.

At extreme values, the turbidity dispersion was low, as seen in Figure 9b y Figure 9c.

The estimations observed in Figure 8 maps and Figure 9 histograms followed the same
measured turbidity trends as Figure 2a for the year 2020.

CONCLUSION

Inlet water properties are an important input in a water treatment plant, to set th@filtration
operation and the reagents needed for the flocculation step. Water turbidity is W,

parameter in the decision-making process.
In Resistencia, Chaco province in Argentina, the inlet water turbiditygof %
treatment plant was studied as a time series. Annual turbidity cycles wer@obsSiy®g
values between January to April-May, and lower values for the rest gfgth¢
Anthropogenic and environmental factors are discussed as reasofs for Wateggulity, mainly
Vi Wilrological system
Several linear and machine learning models were tesgfd o iy cstimation, with the

spectral response at different bands as predictors. A
proposed traditional linear models presenting the higlag

ance metrics, with R>=0.913
ed to create a sophisticated
-MSI spectral data. The largest
easured and estimated turbidity.
model, band B07 (780 nm) was
B06 (740 nm). The partial dependence
outcome variable.

The maps generated from t ied @ S2-MSI products follow the same trend as the
observed turbidity for the
according to the histogra

model to obtain an accurate turbidity esti
turbidity values presented the biggest diff;

Applying global feature importance tedffih
established as the most important varg

development of MglOm forest model with high performance metrics. Turbidity
estimation by thi a relevant contribution in the vital process of water potabilization,
in a region 3 lies regarding satellite data and water quality.

N

band 1 [-]

B band 10 [-]
B11 band 11 [-]
B12 band 12 [-]
B2 band 2 [-]
B3 band 3 [-]
B4 band 4 [-]
B5 band 5 [-]
B6 band 6 [-]
B7 band 7 [-]
B8 band 8 [-]
[-]

B9 band 9
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min,, minimum number of samples [-]
mtry number of predictors [-]

n number of samples [-]
R? Pearson’s coefficient of determination [-]
Rg reflectance remote sensing [-]

X turbidity estimated value NTU
y real turbidity value NTU
y mean turbidity value NTU
Subscripts

1 measurement [-]
Abbreviations

CDOM Coloured Dissolved Organic Matter

ESA European Space Agency

MAGR Metropolitan Area of Gran Resistencia

MNDWI Modified Normalized Difference Water Index

MODIS Moderate Resolution Imaging Spectroradio r

MSI MultiSpectral Instrument

NDTI Normalized Difference Turbidity Inde
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