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ABSTRACT 
Clean water is a scarce resource, fundamental for human development and well-being. Remote 
sensing techniques are used to monitor and retrieve quality estimators from water bodies. In situ 
sampling is an essential and labour-intensive task with high costs. As an alternative, a large 
water quality dataset from a potabilization plant can be beneficial to this step. Combining 
laboratory measurements, given by a water treatment plant in North-East Argentina, and spectral 
data from Sentinel-2 satellite platform, several algorithms were proposed, trained, and compared 
for turbidity estimation at the plant inlet water, in a local river. The highest performance metrics 
were from a random forest model with a coefficient of determination close to unit (0.913) and 
the lowest root-mean squared error (143.9 nephelometric turbidity units). The most influential 
spectral bands were identified by global feature importance and partial dependencies profiles 
techniques. Maps and histograms were made to explore the turbidity spatial distribution. 
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INTRODUCTION 
Ensure water availability is one of the Objectives of 2030 Agenda for Sustainable 

Development by UN [1]. To achieve this, satellite remote sensing techniques can be applied to 
study and monitoring of water bodies, since it’s possible to retrieve spectral data from large 
regions of the Earth surface. Applied remote sensing can be used to estimate biophysical water 
parameters, such as total suspended matter [2], chlorophyl-a [3], Secchi disc depth [4] and 
turbidity [5]. These regression models, the algorithms, can be relatively simple mathematical 
expressions [6] or more complex approaches, like in machine learning methods [7], which 
requires tunning of model specific parameters. Remote sensing techniques can be applied for 
research in a wide range of environmental topics, such as land pollution [8] and glacier retreat 
[9], among others. 

Sentinel-2 (S2) is a spatial mission developed and operated by the European Space Agency 
(ESA), consisting of two platforms: S2A and S2B, launched in 2015 and 2017, respectively. 
The MultiSpectral Instrument (MSI) is the optical sensor mounted in S2, with 10 m of 
maximum spatial resolution, spectral range of 440 nm to 2200 nm, and 5 days of revisit time 
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for the constellation. S2 database is free and open access, available from the Copernicus Open 
Access Hub. S2-MSI has been used in water monitoring and parameter estimation of 
physicochemical properties such as colour of water [10], chlorophyll-a concentration [11], 
coloured dissolved organic matter (CDOM) [12], turbidity by band ratios [13] and to detect 
microplastic pollution [14]. The generated products from S2-MSI are reliable [15] due to a low 
radiometric uncertainty [16]. 

The region of interest is in North-East Argentina, in Chaco Province. This area presents 
several studies regarding fires [17], floods [18], vegetation cover [19] and biodiversity [20]. 
Nevertheless, water quality studies with a remote sensing approach are scarce. Paraná river is 
studied by satellite spectral data, but mainly in the North (inside Brazil borders) or South 
(Argentina middle region) basins. 

Machine learning techniques can find complex relationships between data [21]. The 
combination of machine learning and remote sensing data is a valuable tool to retrieve water 
quality indicators and its spatiotemporal distribution [22]. Considering this method, land use 
classification and its influence in sub-watershed level was obtained by Sentinel-2 imagery and 
cellular automata Markov chains [23]; river water quality models were developed by MODIS 
(Moderate Resolution Imaging Spectroradiometer) and long-short term memory network [24]. 
The advancements in algorithm development, data availability and sensors systems made 
machine learning popular in water quality estimation, outperforming many other methods [25]. 

Turbidity is a water property caused by suspended matter producing light scattering, 
affecting its clarity and colour [26]. This property is a main parameter to define drinking water 
quality and can alter the water treatment plant functioning, since high values can block microbe 
disinfection, altering this step. In the overall potabilization process, chemical addition, settling 
and coagulation are included in the workflow to reduce turbidity and remove sediments [26]. 

Water treatment plants remove pollutants from raw water to obtained clean potable water 
to be consumed by regular population. Water turbidity is a sensitive parameter since the plant 
operation can be stalled if high values are reached. This scenario can put the clean water supply 
at risk [27]. 

The treatment plant contacted for the present study needs to adapt its potabilization process 
to ensure the removal of large amounts of sediments presents in the water. Monitoring and 
understanding the spatial distribution of water turbidity in the inlet river is a valuable input to 
the overall system since it can be used to give support in the making decision process. 

Remote sensing procedures require regular in situ water sampling to correlate spectral data 
with physicochemical data. To collect said samples is labour intensive, costly and time 
consuming [28]. Fiel sampling errors can alter the accuracy and precision of data [29]. An 
alternative is buoys installation that usually are located in a single site in a water body, with 
the corresponding maintenance. The internal sensors in buoys require frequent calibration due 
to accuracy loss and constant cleaning [30]. Anti-vandalism measures are desired to prevent 
equipment damage. Efforts had been made to develop [31] and deploy [32] low-cost buoys in 
marine environments. An optimized system design is fundamental to decrease production, 
operation and maintenance costs [33]. 

Treatment plants laboratories regularly measure water properties, as part of the usual 
operation process. These datasets are a valuable tool to complement remote sensing techniques, 
replacing in situ sampling, as water parameter source for the algorithm development. 
Potabilization plants databases collect historical measurements, often several times a day, that 
can be applied to spectral imagery collections to elaborate regression models for water quality 
estimations. A traditional water sampling program for a large time scale monitoring would 
represent monetary, time and logistic challenges [34]. 

Remote sensing has been incorporated into water monitoring in a treatment plant [35], 
calibrating traditional bands ratio regression models to estimate chlorophyll-a and turbidity, 
using laboratory sampling data from the plant operation. 
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In this study, daily water turbidity values were given by the MAGR water plant, replacing 
conventional in situ water sampling. Using S2-MSI images, processing level L2A, surface 
reflectance (RS) was extracted for the water inlet location, at surface level. A database of 
spectral values and turbidity measurements was built to train several regression models, 
including traditional single band models, and a sophisticated and advanced machine learning 
approach by a random forest (RF) algorithm. The model with the best performance metrics was 
selected and turbidity maps and histograms were made for further study its spatial distribution. 

To understand the spectral bands effect in the whole model, two techniques were applied: 
global feature importance and partial dependencies profiles. The most influential spectral bands 
were compared with the results from different authors to support the found model. 

Water characterization was performed, and several factors are discussed to incorporate 
context to the obtained results. 

MATERIALS AND METHODS 
The area of study is described, mentioning the main rivers in the region. Remote sensing 

and laboratory data, their characteristics, and the mathematical model methodology are 
included in this section. 

Area of study 
The Paraná River is the second longest river in South America, running through 4000 km 

[36]. In Argentina, is the natural boundary of multiple provinces, reaching the Río de la Plata, 
into its exit in the Atlantic Ocean. Paraguay River, with 2550 km [36], is a tributary of Paraná 
River in its middle basin. The Bermejo River, an Andean tributary [37], is the main sediment 
source in the Paraná-Paraguay confluence. Due to the high solids presence in Paraguay River, 
the discharge made into Paraná River alters the characteristics of its composition, creating two 
distinct regions of high (West) and low (East) sediment concentration [38]. 

The Metropolitan Area of Gran Resistencia (MAGR) is an urban region in Chaco Province, 
North-East Argentina. It’s composed of four cities, including Resistencia, the capital city of 
Chaco. MAGR has a population of 423000 inhabitants, according to the last census [39]. Paraná 
River has a large impact in its society: fishing industry, tourism, recreational activities of the 
local communities, and transportation route [40]. The water source for the MAGR 
potabilization plant is located in an arm of Paraná River, Barranqueras River, which is 
connected to two main rivers in the metropolitan area, Black and Tragadero Rivers. 

A map of the region of interest is shown in Figure 1. The inset image corresponds to 
Argentina, with Chaco province (pink), MAGR location (white dot) and Paraná River 
extension (blue line). The main image is a real colour satellite view of the study area, with the 
potabilization treatment plant (yellow triangle) in Barranqueras city and main rivers. 

The sample point (red star), located in 58°54'23''W 27°28'20''S, was selected over the 
Barranqueras River, at the inlet position.  

From the inlet point, the water is pumped into a chamber from which its distributed to the 
different plant sections. In this chamber, samples are collected and delivered to the in-site 
laboratory to measure a series of parameters, mainly turbidity, pH, electrical conductivity, and 
alkalinity. 

Laboratory data 
Daily measurements were given by the in-site laboratory at the water treatment plant [41], 

located in Barranqueras city, from 2017-01-01 to 2021-09-03. In this time span, 1732 
observations were recorded. The parameters and their units were: pH; electrical conductivity, 
in micro siemens per centimetre [µS/cm], alkalinity, as parts per million of calcium carbonate 
[ppm CaCO3]; and turbidity, in nephelometric turbidity units [NTU]. Alongside these data, 
supplementary water samples were taken to assess more sediments related parameters, such as 
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total suspended matter (TSM), total dissolved matter (TDM), and total matter (TM). These 
parameters, measured in parts per million [ppm], are related since TM is the sum of TSM and 
TDM. In total, 28 complementary samples were collected, from 2021-08-24 to 2022-12-07. 
The sampling was made at the distribution chamber, collecting 1 litter of water, in a dark glass 
bottle. 

The physicochemical methods applied to measure pH, conductivity, alkalinity, turbidity, 
TSM and TM were 4500 H+, 2510-B, 2320-B, 2130 B, 2540 D and 2540 B, respectively, 
according to Standard Methods techniques [42]. TDM was calculated as the difference between 
TM and TSM. 

Remote sensing data 
Satellite spectral RS data was obtained from S2-MSI. Table 1 resumes the characteristics of 

both sensors since products of platform S2A and S2B were used. Maximum spatial resolution 
of 10 m (when available), 5 days revisit time, and 11 spectral bands were used. Bands B09 and 
B10, at 945 nm and 1373 nm, respectively, were discarded since no surface measurement is 
done at those wavelengths. 

Copernicus Data Space Ecosystem provides complete, open, and free access to S2 products. 
For the same period, 382 images were acquired. S2-MSI, processing level L2A, are 
atmospherically corrected by Sen2Cor processor [43]. Using the quality assessment band, 
QA60, the images with present clouds were discarded. This simple method was preferred over 
more complex approaches [44], since QA60 band is a coded bit mask detecting clear sky, dark 
clouds, and cirrus clouds. This band was acquired from the Sentinel-2 dataset in Google Earth 
Engine platform [45]. 

 
Figure 1. Region of study, indicating main rivers, water plant location and sample site. 

Inset: Chaco Province relative to Argentina, MAGR location and Paraná River extension. 
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After removing the dates with clouds over the study area, 181 products remained to 
continue the analysis. 

 
 

 
The satellite products were cropped around the area of interest, then resampled to the same 

spatial resolution of 10 m. The RS  values extraction was made using a 3x3 pixel window 
around the point near the plant water entrance, on Barranqueras River (Figure 1). The final 
pixel value was the mean of the individual values in the grid. 

Modelling  
As a preliminary step, the relationship between turbidity and RS per band was studied. 

Thus, the potential impact of individual bands in the turbidity value was evaluated. 
The target parameter in the modelling process was turbidity as a mathematical regression 

problem, with the spectral bands as predictors. 
Two main modelling methods were used: linear, with algebraic relationships between the 

predictors, and a based-tree machine learning RF approach. To perform the linear modelling 
several spectral bands and normalized difference turbidity index (NDTI) were used. NDTI was 
obtained by the red and green bands, B04 and B03, respectively [46]. This index was used for 
water quality assessment and it’s proportional to turbidity [47]. The expression is shown in Eq. 
(1). 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝐵𝐵04 − 𝐵𝐵03
𝐵𝐵04 + 𝐵𝐵03

 (1) 

 
Machine learning techniques were applied to improve traditional methods for parameter 

retrieval [48]. RF operates by an ensemble of decision trees [49], each one trained by a subset 
of the whole data. RF can manage many predictor variables and maintain low levels of over-
fitting [50], a negative aspect in modelling. 

RF modelling used all spectral bands available (Table 1), since this method is appropriated 
to find non-linear relationships between multiple predictors. To improve the performance of 
RF, a tuning step was applied to obtain the best arguments, the hyperparameters, required in 
this model. The tuned hyperparameters were the minimum number of samples taken from the 
dataset to form a node in a decision tree (minn) and the number of predictors that will be 
sampled (mtry). The ‘trees’ hyperparameter was fixed at 1000 units. Both steps of sample 

Table 1. Sentinel-2 spatial and spectral resolutions of platforms S2A and S2B. 
    

S2A S2B 
Band Spatial 

resolution [m] 
Central 

wavelength [nm] 
Bandwidth 

[nm] 
Central 

wavelength [nm] 
Bandwidth 

[nm] 
1 60 442.7 21 442.3 21 
2 10 492.4 66 492.1 66 
3 10 559.8 36 559.0 36 
4 10 664.6 31 665.0 31 
5 20 704.1 15 703.8 16 
6 20 740.5 15 739.1 15 
7 20 782.8 20 779.7 20 
8 10 832.8 106 833.0 106 

8A 20 864.7 21 864.0 22 
11 20 1613.7 91 1610.4 94 
12 20 2202.4 175 2185.7 185 
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observations and predictors selection are random, across all trees. The final turbidity estimation 
was an average value of all tree’s individual estimations. 

The tuning process applied was made by the racing technique [51]. This technique 
evaluated the model in a subset of resamples obtaining the performance metrics, continuing 
only with the hyperparameters that showed good results. Usually, racing techniques are faster 
to compute than traditional methods, such as grid search [52]. 

To measure the model’s performance the metrics calculated were: Pearson’s coefficient of 
determination (R2) and root mean squared error (RMSE). The following equations show the 
mathematical expressions for these metrics: 

 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

 (2) 

  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (3) 

 
Where 𝑖𝑖 represents each measurement, from a total of 𝑛𝑛 samples. 𝑦𝑦𝑖𝑖 are the real turbidity 

values, and 𝑥𝑥𝑖𝑖 the estimated values from the correspondent model. For R2, Eq. (2), 𝑦𝑦�𝑖𝑖 is the 
mean value of 𝑦𝑦𝑖𝑖. A preferred model consists of a high value of R2, closer to 1, and low RSME. 

To produce a model, linear or RF, the dataset was split in two parts: 75% of the samples 
was used for training and tuning of the corresponding model; the remaining 25% was used only 
for testing and to finalizing the model, that is, to get the last version of the model specification. 
This methodology followed the best practices for data modelling [53].Since the original dataset 
corresponded to a time series of turbidity values, the testing split corresponded to the most 
recent dates. The training dataset was resampled by a 10-fold cross-validation 

The performance metrics were calculated in the training step only for the selection of the 
best model. Once the selection was made, the model was evaluated using the testing dataset, 
with new and later observations, to calculate the final performance metrics. The estimated 
turbidity values were compared with the validation values in a time series plot. 

Several maps showcasing the turbidity spatial distribution were made applying the selected 
model to S2-MSI products, in the Barranqueras River, for four different dates. The spectral 
index MNDWI (modified normalized difference water index) was used to mask the water from 
the scene [54]. An automatic method was used to identify the MNDWI threshold value [55]. 

RESULTS AND DISCUSSION 
Water characterization results are summarized and discussed as a parameter time series. 

Anthropogenic and environmental factors are mentioned to explain water quality. Model 
selection and hyperparameters tuning are described. To evaluate spectral bands effect, two 
techniques were applied to the best model. Water turbidity spatial distribution was assessed by 
maps and histograms. 

Water characterization 
The parameters measured by the water treatment plant are shown in Figure 2 as a time series 

plot. The number of samples (n) is shown in the top right corner of each panel. 
In 2019, Paraná River scarce rains and drought caused an historic low level of water [56]. 

This can be seen in the steady increase in turbidity (Figure 2a) and conductivity (Figure 2d). 
Conductivity from 2019 and forward started to be more disperse than previous years. Turbidity 
presented yearly cycles, with high values at the beginning of each year, between January and 
April-May, then followed by a low-turbidity period. 
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Main statistical values per parameter are summarised in Table 2. Mean, median, standard 
deviation (SD), initial and final sampling date and number of samples (n). 

Water properties are heavily influenced by dams’ operations [57] in the North basin (south 
Brazil) being Itaipú dam (Paraguay-Brazil) and Yaciretá reservoir (Paraguay-Argentina), the 
closest to the study area. 

The main source of sediments in Paraná river is due Bermejo River, a Paraguay River 
tributary, creating a high turbidity imbalance [58]. Due to heavy rains in Bermejo River 
headwaters, between October and April, a high sediment concentration is reached in Paraná 
River between December and May [57]. Said period corresponded with the turbidity cycles 
observed in Figure 2.a. 

In a regional scope, Black River is in a meander area with low surface slope causing a low 
soil erosion that carries sediments to Tragadero River (Figure 1). MAGR has flood risk and 
intense rains (1500 mm a year [59]) can cause hydric emergency [60], altering the water 
properties in the treatment plant inlet and increasing Paraná River flow rate. 

 
 

Figure 2. Time series of measured water parameters: turbidity, alkalinity, pH, and conductivity. 
 

 
Table 2. Statistical summary of measured water properties. 

       
Parameter Mean Median SD Initial date Last date n 

Turbidity [NTU] 280.7 89.8 328.2 2017-01-01 2021-09-30 1732 
Alkalinity [ppm CaCO3] 40.0 40.0 7.9 2017-01-01 2021-09-30 1732 
pH 7.3 7.3 0.2 2017-01-01 2021-09-30 1732 
Conductivity [µS/cm] 293.6 220.2 205.6 2017-02-10 2021-09-30 1690 
TSM [ppm] 84.2 30.0 171.6 2021-08-24 2022-12-07 25 
TDM [ppm] 195.9 166.8 100.8 2021-08-24 2022-12-07 26 
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The highest water flow in Paraná River occurs between February and March, with values 
over 30000 m3/s, with a mean of 17000 m3/s [61]. The change in water flow, land use and 
hydroelectric development (by dam constructions) alters the hydrologic characteristics of 
Paraná waters, thus affecting water treatment operation in the last decades [61]. 

To estimate turbidity from RS  was necessary to inspect the relationship between them. 
Figure 3 shows the spectral signatures of all the observations in light grey lines. Grouping the 
data observations by turbidity ranges, mean spectral signatures were obtained, in black lines. 
Lower turbidity (<150 NTU) presented the lowest RS. As the turbidity range increased, the 
spectral signature response raised until values higher than 1050 NTU. 

Bands B01, B11 and B12 (Figure 3) are not sensitive to turbidity change, since the points 
for different turbidity ranges remained in the same position. Bands B05, B06 and B07 presented 
the highest changes. These bands were related to algorithms for turbidity estimation [5]. 

Model selection 
Several models were tested to estimate the inlet water turbidity for the treatment plant. The 

predictors variables were selected according to the model. For RF, S2-MSI bands shown in 
Table 1 were used as predictors. Traditional linear models were produced by the following 
variables: an interaction between B06 and B07; individual bands B05, B06 and B08; and the 
spectral index NDTI. The aforementioned spectral bands were selected according to the results 
from Figure 3. 

The characteristics and performance metrics for all proposed models are resumed in Table 
3. These metrics were used to select the model, and, in a later step, the model is finalized using 
the preserved testing dataset, with observations not used in the training. The best results were 
achieved by the RF model. 

R2 for individual bands B05, B06 and B08, presented 0.693, 0.732 and 0.736, respectively. 
In a similar work [5], also in turbid lakes, R2 for the same bands were 0.83, 0.66 and 0.63, 
respectively. 

TM [ppm] 281.9 209.5 212.1 2021-08-24 2022-12-07 25 

 
 

Figure 3. Mean spectral signatures per turbidity range, for S2-MSI bands. 
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RF model was the selected model in the following analyses, since it presented the best 
performance metrics, with the lowest deviations (RMSE) and highest correlation (R2). This 
machine learning algorithm could capture the complex relationships between satellite spectral 
data and turbidity values, more than the proposed usual regression models. A RF model with 
proper modifications performed better than others machine learning options for turbidity 
estimation [62]. 

The interaction model between B06 and B07 was the second-best model, combining bands 
in the red edge, related to sediments in water [63]. In comparison, using single band linear 
performed poorly. The NDTI index presented the lowest R2 and the highest RMSE, unlike 
other studies [64]. 

The tuned hyperparameters values and the main characteristics of the final RF model are 
shown in Table 4. 

 
Table 4. RF model main characteristics and hyperparameters. 

 
RF type Regression 

Training observations 116 
Variables 11 

Trees 1000 
minn 14 
mtry 2 

 
After the model selection the last fitting was performed. For the RF model, the final 

performance metrics were obtained by the testing dataset. These observations were kept apart 
so they have no influence on the modelling. The metrics were RMSE = 143.9 NTU and R2 = 
0.913, with 39 data points. Noted that these values are different from Table 3, since those were 
obtained from the training data set, and are used only for model selection. 

 
Table 3. Regression models candidates and training performance metrics 

 
Model characteristics Performance metrics 

Specification Expression RMSE [NTU] R2 
RF Turbidity ~ all bands 111.5 0.841 

Linear model Turbidity ~ B06 + B07 + B06×B07 121.9 0.802 
Linear model Turbidity ~ B08 142.9 0.736 
Linear model Turbidity ~ B06 145.7 0.732 
Linear model Turbidity ~ B05 155.8 0.693 
Linear model Turbidity ~ NDTI 218.7 0.296 
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The comparison between measured and estimated observations in the testing split is shown 
in Figure 4 

The solid line represents the linear relationship between estimated and measured turbidity, 
with a dashed line at 45°, for comparison reasons. Lower estimated turbidity values are closer 
to the real values. For higher turbidity the deviations increased, with estimates being lower than 
measured values, with the solid line below the dashed line. The outcome variable presented a 
wide range, with many observations under 100 NTU, and measurements as high as 1100 NTU. 

The measured and estimated turbidity values, for the validation dataset (Figure 4), are 
shown as a time series plot in Figure 5. The crosses represented the estimations made by the 
RF model; the turbidity measures were plotted as a solid line. The number of samples in the 
testing dataset is shown in the top right corner. 

The biggest differences between estimated and measured turbidity in Figure 5 are within 
the larger values, equivalent to Figure 4. The estimations followed the same trend seen in the 
turbidity time series in Figure 2, with high turbidity in the beginning of the year, continued by 
lower values in the middle and end year. 

 

 
 

Figure 4. Estimated and measured turbidity using the validation dataset. 



Gauto, V., Utges, E., et al. 
Turbidity Estimation by Machine Learning Modelling and…  

Year 2025 
Volume 13, Issue 2, 1130539 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 11 

 

Understanding the random forest model 
The complexity of a RF model is difficult to explain since the explicit form is not as clean 

as a simpler model, i.e., linear model. The global feature importance is an explanatory 
technique that assists in understanding the driving predictors of a RF, aggregated in the entire 
training observations. 

The results of the global feature importance for the obtained RF model, analysing each 
spectral band, is shown in Figure 6. This technique is based on the notion of the overall change 
in the model due to the perturbation of a specific variable [65]. A permutation-based approach 
is a valuable tool for model explanation, since it is expected that after the permutation of said 
variable the model performance will decrease [49]. Spectral band B07 presents the most effect 
in the model, according to Figure 6, since the boxplot had the highest RMSE (104.9 NTU). 
Close to B07 was B06, B08 and B05. Spectral bands B05 [66] and B08 [13] have been reported 
to be related to turbidity. The least effects were given by B01, B02 and B03, since the 
perturbation of these bands had a much lesser impact on the overall model. The vertical dashed 
line represents the base RMSE. 

The most influential bands were in the range of 704 nm to 830 nm, with the least influential 
between 440 nm and 500 nm. A similar result, was found applying the same method in the 
North Tyrrhenian Sea [67], but the importance order was B05 (the highest), followed by B07 
and B06. Turbidity estimations were most successful when the wavelength was between 700 
nm and 800 nm for surface water [68]; this range including B05, B06 and B07. 

Partial dependencies profiles allowed to show the change in the expected value of a model 
estimate alongside a single explanatory variable [65]. According to the global feature 
importance technique, B07 was the spectral band that had the highest effect on the RF model. 
For this band the partial dependencies profile was obtained and is shown in Figure 7a. 

 
 

Figure 5. Time series of estimated and measured turbidity in validation dataset. 
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The thin grey lines in Figure 7 correspond to 100 randomly selected observations from the 
training dataset. The black line indicates the mean. The effect of B07 (Figure 7a) on turbidity 
estimates was constant until RS = 0.12, then started to increase until its highest effect at RS = 
0.2. In this range of surface reflectance, the change in turbidity was from 218.7 NTU to 353.8 
NTU. For comparison, Figure 7b corresponds to an identical analysis for B01, the band with 
the lowest feature importance as mentioned previously (Figure 6). The partial dependency 
profile of this band was constant, that is, the turbidity presented no change in the entire range 
of RS from B01 values. This result was consistent with Figure 3 and Figure 6. 

Turbidity spatial distribution 
The obtained RF model was applied to the spectral values from Barranqueras River to 

evaluate the spatial turbidity distribution. Maps for four different dates from 2020 are shown 
in Figure 8. 

The yellow triangle on the top-centre of each panel represents the water plant location. A 
water mask was applied to the region of interest to only extract pixel values from the 
Barranqueras River. 

 
 

Figure 6. Global feature importance of S2-MSI spectral bands in RF model. 
 

 

 
 

Figure 7. Partial dependencies profiles for spectral bands B07 and B01. 
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Figure 8a (2020-01-07) and Figure 8d (2020-12-22) presented relatively low turbidity, with 
a wide dispersion. Figure 8b (2020-04-11) and Figure 8c (2020-08-24) presented a narrower 
turbidity dispersion, thus the colour homogeneity. For the former date, high values were 
estimated; for the latter, low turbidity values were obtained. 

For a better understanding of the turbidity spatial distribution, histograms were plotted, as 
seen in Figure 9, to showcase the estimations dispersion alongside Barranqueras River. The bin 
width was set in 10 units. 

 
 

Figure 8. Barranqueras River turbidity maps for four different dates. 
 

 

 
 

Figure 9. Turbidity histograms per selected dates, as seen in Figure 8. 
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Figure 9a (2020-01-07) presented relatively lower values, with a wide dispersion. The 
median turbidity was 117 NTU. High values and a narrow dispersion were observed in Figure 
9b (2020-04-11), with an 889 NTU median. The lowest turbidity distribution was obtained in 
Figure 9c (2020-08-24), presenting a single peak at 69 NTU. Finally, in Figure 9d (2020-12-
22), the values increased until a 128 NTU median and a wider dispersion. 

At extreme values, the turbidity dispersion was low, as seen in Figure 9b y Figure 9c. 
The estimations observed in Figure 8 maps and Figure 9 histograms followed the same 

measured turbidity trends as Figure 2a for the year 2020. 

CONCLUSION 
Inlet water properties are an important input in a water treatment plant, to set the filtration 

operation and the reagents needed for the flocculation step. Water turbidity is a valuable 
parameter in the decision-making process. 

In Resistencia, Chaco province in Argentina, the inlet water turbidity of the local water 
treatment plant was studied as a time series. Annual turbidity cycles were observed, with high 
values between January to April-May, and lower values for the rest of the year.  

Anthropogenic and environmental factors are discussed as reasons for water quality, mainly 
dam operation, floods, rain and tributaries in Paraná River. This complex hydrological system 
modifies water parameters, affecting treatment plant management. 

Several linear and machine learning models were tested for turbidity estimation, with the 
spectral response at different bands as predictors. A tuned RF model outperformed the 
proposed traditional linear models presenting the highest performance metrics, with R2 = 0.913 
and RMSE = 143.9 NTU. The machine learning method allowed to create a sophisticated 
model to obtain an accurate turbidity estimation from S2-MSI spectral data. The largest 
turbidity values presented the biggest differences between measured and estimated turbidity. 
Applying global feature importance technique to the RF model, band B07 (780 nm) was 
established as the most important variable, followed by B06 (740 nm). The partial dependence 
profile for B07 indicated the highest change in the outcome variable. 

The maps generated from the RF applied to S2-MSI products follow the same trend as the 
observed turbidity for the same period. Extreme turbidity values presented low dispersion, 
according to the histograms. 

Using water treatment plant laboratory data, replacing traditional in situ water sampling, 
with remote sensing techniques and combined with machine learning modelling, allowed the 
development of a validated random forest model with high performance metrics. Turbidity 
estimation by this study was a relevant contribution in the vital process of water potabilization, 
in a region with scarce studies regarding satellite data and water quality. 

 

NOMENCLATURE  
B1 band 1 [-] 
B10 band 10 [-] 
B11 band 11 [-] 
B12 band 12 [-] 
B2 band 2 [-] 
B3 band 3 [-] 
B4 band 4 [-] 
B5 band 5 [-] 
B6 band 6 [-] 
B7 band 7 [-] 
B8 band 8 [-] 
B9 band 9 [-] 
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minn minimum number of samples [-] 
mtry number of predictors [-] 
n number of samples [-] 
R2 Pearson’s coefficient of determination [-] 
RS reflectance remote sensing [-] 
x turbidity estimated value NTU 
y real turbidity value NTU 
y� mean turbidity value NTU 

 
Subscripts   
i measurement [-] 

 
Abbreviations   
CDOM Coloured Dissolved Organic Matter  
ESA European Space Agency  
MAGR Metropolitan Area of Gran Resistencia  
MNDWI  Modified Normalized Difference Water Index  
MODIS Moderate Resolution Imaging Spectroradiometer  
MSI MultiSpectral Instrument  
NDTI Normalized Difference Turbidity Index  
NTU Nephelometric Turbidity Units  
pH Hydrogen Potential  
ppm Particles Per Million  
QA60 Quality Assurance 60  
RF Random Forest  
RMSE Root Mean Squared Error  
S2 Sentinel-2  
S2A Sentinel-2 platform A  
S2B Sentinel-2 platform B  
TDM Total Dissolved Matter [ppm] 
TM Total Matter [ppm] 
TSM Total Suspended Matter [ppm] 
UN United Nations  
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