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ABSTRACT

Electrical energy is a key factor in the development of any najimg
recent years. This is putting existing power networks in diffi ot anticipated
this meteoric rise. Blackouts occur daily and hurt the socio-ecOy pment of nations,
especially the most vulnerable. A predictive net SQsolution would contribute
effectively to better transmission network planning. ¥g i pge data for conventional
networks are based solely on dispatcher reports to exploit. This is the case for
the Electrical Community of Benin transmissj standing the predictive nature
$n this network. This paper aims
unity of Benin power grid using
curity of the electricity transmission
network. Predicting the number of o i tion and the overall power lost will allow
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were used to fit Beg unity network outages and accumulated sources using
Weibull's law, outd @
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in prodtf€tivity per worker, and a 0.061% drop in value added per worker. Similarly, power
outages reduce labor productivity and losses, which amount to around 4.91 million USD per
year [1]. The impacts of power grid failures are well known in the literature, especially the
major worldwide failures described in [2] and [3]. Most of these outages are caused by line
tripping, protection system malfunctions, power oscillations, and voltage instability, as well as
system splitting and collapse [4]. Among these, frequency drop and phase shift cannot be
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prevented by system operating actions, whereas overloads and transmission voltage drops can.
Given that inaccurate identification of a fault point can delay network recovery time, resulting
in economic losses and customer dissatisfaction [5], It seems necessary to consider structural
and reliable mechanisms to predict network failures. For example, predicting cascading faults
would effectively manage voltage instability during cascading [6].

As the study carried out by [7] shows a weak predictive character of SCADA data in the
transmission power system, an analysis based on event report data coupled with operating data
of a conventional SCADA-supervised power system is required. The aim is to set up a
predictive system that would enable players in the field to anticipate outages and minimize
their impact, to contribute effectively to the development of any nation, in line with one of the
criteria of smart grids [8].

A survey carried out by [9] showed that the breakdowns by region in the world %4 2041 put
sub-Saharan Africa in fourth place, with 210 major outages lasting 7.5 hours T oytdg€e. The
transmission networks of Togo and Benin are no exception. A study ca

network, an outage prediction solution would enable stakeholde
certain power transmission lines in both countries (health, the azgg
certain essential neighborhoods...), to minimize the impact of:
the entire network. Because a minor interruption would af]
[11].

For the characterization of electric power operg
which combine statistical and engineering metha
economic and technological methods [4].
highlighting the predictive nature of a sy
Effects, and Criticality Analysis is a wid
industrial and service applications [1
methods are gaining increasing atte
operations, as they offer a new afpro
is due to the diversity of renewa
deterministic methods for
proposed a new PRA gme

probability of trippi @
oioa il

defining the eq

services, and
ent blackouts of

there®are bottom-up methods,
wn methods, which combine

ing d

essing safety in power system operations. This
ces connected to the grid, which tends to render
119, powgr system security obsolete [ 14]. In this context, [15]

ed at assessing operational risk, measured by the
ithin a 10 to 15-minute interval. In [16], the practical
ied based on the failure probability of key equipment by

g'1s studied by defining the social influence factor and the loss-of-
gipplied to the risk assessment of the Shenzhen network are reasonable

Work under extreme events involving simultaneous faults and cascading
osed risk assessment considers detailed reliability models of the protection
nents, including circuit breakers and protective relays. The effectiveness of the
sk assessment method is demonstrated using a modified 9-bus system and the IEEE
68-bus system. Risk-based electricity dispatching has been proposed as a viable alternative to
security-constrained dispatching to reduce power grid costs and help better understand
significant hazards [18]. A high penetration of renewable energy has caused stochastic power
injection at the interface between the transmission and distribution systems [19]. As a result,
stochastic analysis remains one of the most reliable methods for characterizing electrical
energy data. Stochastic processes are mathematical models describing the behavior of evolving
random variables [20]. Electrical data has these behaviors, which can be modeled by these
processes. For statistical methods, probability density functions (PDFs) are commonly used.
Mathematical models for characterizing these PDFs are numerous and varied.



For sources, [21] proved that among the set of probability distribution functions such as
Gaussian, Skewnormal, Rayleigh, and Exponential, the Skewnormal function best describes
BEC source data. Similarly, of the Gaussian, Skewnormal, and Weibull distributions used to
characterize imports, Weibull holds sway for the TCN source and Skewnormal for the
VRA/CIE source. The Kolmogorov-Smirnov test and performance indicators such as root
Mean Square Error (RMSE) and coefficient of determination (R?) were used. For the prediction
of wind power production, [22] have shown that the mixture of Weibull and extreme value
distributions (mixture of Gumbel, Freche, and Weibull) describes unimodal and bimodal wind
behavior, while the mixture of extreme value and Lognormal distributions describes unimodal
bell-shaped wind behavior.

Regarding network load, the generalized form of the Weibull distribution mod.
a global characterization of billing data and household consumption [23]. Whereas,

model, taking into account the statistical deviation of the demand of e3
gamma distribution [26].

Electrical network faults are also characterized in the litera
Weibull distribution makes it possible to specify in a pra
equipment such as circuit breakers and current transfo

t1 er the faults of
ochastic short-circuit

adjusted with a semiparametric Gaussmn
distribution networks with photovoltai
function was selected as the best
criterion by taking the parameters offlong-term
reflect the reality on the ground

The transmission network isWQe Jafck f the electricity network. For better planning, it
is necessary to have the ov, of e source, load faults, and its characters. To minimize
the error rate in the chqa hat best describes the quantities thus cited, it is clear
that a single test wit adjuStment criteria remains insufficient. This article proposes
an analysis of trapsmaissy ] fallures based on all the data of sources, loads and general
parameters of EQ@B
criteria. Kn g

imbalance between the load and the source can cause a frequency
smaPtotal blackout, predicting holistically, the failures of the electrical
netwqrk, t atiof of these failures, and the lost power would contribute to quantifying the
reli rical transmission network and save on the price of electrical energy.

METHODS

Several methods are used today to characterize electrical data: the graphical method, the power
density method, etc. [12], which determine the constants of the chosen distribution function. The
machine learning approach is being increasingly studied, which allows several probability density
models to be proposed so that the machine can propose the models that best describe the data
under study. This study is based on this approach. The data to be modeled will be presented,
followed by the method for modeling these data. It should be noted that the probability density
will be calculated with the SciPy module in Python. The calculated probability density functions



are in normalized form. To scale, you must use the loc and scale parameters according to equation

(D).

x — loc
by (” with y = (1)
scale

pdf (x) =—

Presentation of Electrical Community of Benin

The Electrical Community of Benin (ECB) manages the Togo and Benin electricity
transmission networks. The network comprises 1,288.3 km of high-voltage lines, with transformer
stations with a total capacity of 397.16 MVA. The network is supplied by renewable sources
(hydroelectric and solar), thermal sources, and two import lines from the Volta Rlver uthority
(VRA) from Ghana and the Transmission Company of Nigeria (TCN). The networ
using the N-1 method and a SCADA/EMS (Supervisory control and data acquisiti
Management System). A section of the ECB network in Togo is presente %

represented by Figure 1. m

ﬁﬁ;“

v Flgure 1. ECB network of Togo [30]

undergO®€ preprocessing to obtain the study data. Data from the SCADA database is hourly. And
the incident reports are weekly. The preprocessing consisted of summing the hourly data (sources
and consumption) to obtain the weekly data. The two types of data were then concatenated in the
date column to find the study data. This processing was carried out using Anaconda's Jupiter 6.4.8.
The study data consists of 204 rows and 4 columns. The statistical description of the data used is
shown in Table 1.

The probability densities of the data were run through Kolmogorov Smirnov tests with Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC) error estimators compared
to existing models. This is followed by a test of cumulative Chi-2 densities and the root mean
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square error (RMSE) estimator to select the model that best characterizes the data studied. This
method is described by the flow chart in Figure 2.

Table 1. Descriptive statistics

Total power Number of Duration of
from sources triogers outages
(MW) £e (min)
mean 76293,77 40,11 2035,16
std 24238,59 17,65 1815,60
min 6935,29 6
25% 54921,68 27,75
50% 74261,75 40
75% 98405,06 51
max 11939298 110 2
Coefficient of 0,02 0.56 5
Skewness
Coefﬁcwm of 1,06 0 Q 56 0.995
kurtosis
VAV 4
Incidents reports of
dispatching (Weekly)
Extraction Extraction

Power generation data (hourly) !

. Out dat: ki
Concatenation by sum | MBS ks [wes iy

h 4
Power generation data (Weekly) /

Concatenation on the duration column

4

Data frame

: < PDF and CDF Tansformed
y
Data for study

< Models for data fithing

<

y
PDF and CDF of DATA

A 4
; Best model for
Test for choosing the best
[reem— data
model

Figure 2. Methodology diagram
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Theoretical foundations of the tools used
The following describes the tools used in this paper to model the data.

Kolmogorov-Smirnov hypothesis test. The Kolmogorov-Smirnov test is a hypothetical test
used to determine whether a sample follows a given distribution known by its continuous
distribution function, or whether two samples follow the same distribution. The reference
hypothesis HO and the opposite hypothesis follow equation (2).

HO - F*(x) = F(x)
; 2)
H1 - F*(x) # F(x)

Where: F*(x), and F(x) are the empirical and theoretical functions respectively.

statistic is used as a relative indicator. The K-S test is best at estimating )
models. It represents the level of rejection of the null hypothesis (HO) ofthe Kglmog&ov-Smirnov
test. The lower the KS value, the higher the acceptance rate of the nu Ny en the K-S
value is less than 0.05, you are informed that the mismatch is sigpifigar

en it comes to choosing
wing pool of models described

(BIC) are criteria for choosing the right
complexity of the model that best descri
model selection in regression analysi®
describe the data under study. AICfi
taking into account the number gfpara

e selection of simple models that best
t maximizes the likelihood of the data while

3)

Where: L represe um likelihood and k the number of parameters including the
intercept and any &%

Like the AIC n Information Criterion (BIC) is another model selection criterion
that takes i h model fit and complexity. The BIC is based on Bayesian principles
and provade alty for model complexity than the AIC. The BIC is given by equation
(4).

BIC = —2log(L) + kLog(n) 4)

erc@ L represents the maximum likelihood, k is the number of parameters including the
interceptand any additional predictors, and n is the sample size. The lower their values, the better
the model describes the data under study.

Sum of squared errors. The sum of squared errors (SSE) is a measure of the deviation between
the data and an estimation model. It is commonly referred to as deviance. The lower the SES, the
tighter the fit of the model to the data used. It is used as an optimality criterion in parameter and
model selection when fitting data. It is defined by equation (5).

SSE = Z;(xi _% )



Chi-2 goodness-of-fit test. The chi-2 test is a goodness-of-fit test that checks whether a sample
of a random variable F(x) gives observations comparable to those of a defined probability law P.
The null hypothesis (HO) is that the random variable F(x) follows the probability law P. The null
hypothesis here is that the observation is sufficiently close to the theory. The null hypothesis (HO)
is that the random variable F(x) follows the probability law P. The null hypothesis here is that the
observation is sufficiently close to the theory and is generally rejected when p < 0.05.

Root mean square error. The root-mean-square error (RMSE) in statistics is an indicator that
best measures the difference between the actual observed distributions and the predicted

probabilities for each observation. The lower the RMSE value, the more effective the a#édel is at
modeling the data. The value of the RMSE is given by equation

(6) [12].
1/2
(6)

Where: Fi* and Fi represent the empirical and theoretical @ S observed models,

respectively. In this case, the CDF.
RESULTS AND DISCUSSION
This section describes the data modelling¥fesult )F and CDF and presents the test

NG

i=1

results for the best model choice.

Best models selecting
PDF functions have been chosg ach of theuantities studied (see Table 2). The literature
i tes#, the Akaike Information Criterion (AIC) and
) conyenience test, and the sum-of-squares-errors estimation
W@V test, only the Erlang and Beta distributions apply to

the outage duration d
for the non-distribyte

accepted by the Og , while the last three are rejected. For the sources, even if the
Kolmogorov, N Weibull distribution with a rate of 90.1%, the P-value is less than
0.05, whichf@allows Mo @ject. According to this test, no distribution can be used to model total

data fro . Therefore, to use the data from the ECB sources, they will have to be
ccording to the studies carried out by [21]. All these results are shown in

has the est AIC value, but its statistic value is 0.102, i.e. a Kolmogorov test success rate of
89.8% against the Erlang and Beta functions with successive AIC values of 2205.59, 2207.31 for
a statistic of 0.045, i.e. a success rate of 95.5%, putting these two models ahead of the Exponential
model.
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Table 2. Test results for model selection

Year 2024
Volume 13, Issue 1, 1120531

Probability density functions

Model chose estimators

Kolgoromorov Smirnov

8 test

< . . . .

O models  Distributions o ggp Arc Bic P P pecision
parameters stic value
k=1.4718,

Erlang loc=35.4686 2.71e-07 2205.59 -4153.67 0.05 0.782 ccepted

?o scale= 1358.59

5§ a=1.47096

o b=3.35¢+9

G — -

g Beta loc= 35 50642 2.71e-07 2207.31 -4148.31 0.0 cepted

2 scale=4.55e+12

<

5 ) loc=46.0 )

A  Exponatial scale=1989 158 4.79¢-07 2132.69 -4042 MO 6 Rejected

) loc=-653.349 )
Rayleigh scale= 2.9 e43 5.05e-07 2477.04 0.0004 Rejected
c=1.021

dWeibull loc=1642.74  5.33e-07 0.14 0.0005 Rejected
scale= 1206.65
c=1.2997

dWeibull loc=38.4972 -2180.32 0.04 0.83  Accepted
scale=15.1662

Lognormal 1084.17 -2176.56 0.05 0.56  Accepted

8

&

3

= Beta 1084.61 -2171.01 0.06 0.52  Accepted

=

(]

Na)

g

= Ga =-13.709 0.0044 1082.61 -2176.32 0.06 0.52  Accepted
scale=5.848

3 a=2.529
1 loc=20.461 0.0044  1088.15 -2175.14 0.06 047  Accepted
scale=26.379
Exbo- K=7.28039
P loc=44.6098 0.0002 1388.36 -2860.94 0.04 0.88  Accepted
normal
scale=15.71597
Skewed a=0.799352

‘g Cauchy loc=54.232 0.0002  1412.03 -2.857.96 0.09 0.051 Accepted

E scale=42.6779

2

o

[l
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Skew a=16.44380
loc=32.909 0.0002  1388.53 -2799.49 0.11 0.010 Rejected
normal

scale=167.422

c=2.1837
dWeibull loc=75405.89  7.71e-09 2489.80 -4879.89 0.09 0.032 Rejected
scale=24581.95

a=2.8054
b=1.59529 .
§ Beta loc= 9040497 1.09e-08 2390.83 -4802.13 0.17 0.010 Rejected
‘g scale=1.19 e+5
z . loc=3.60 e+4 4
S - -
5 Rayleigh scale=3 30 otd 1.14e-08 e 480496 0.19 0 ected
o
a s=0.037
Lognormal loc=-5.605e+5 1.17e-08 242541 -4794.25 0.16 08 ejected
scale=636437.6
a=9618.08,
Gamma  loc=-2.294e+6 1.18e-08 2419.20 0? .000 Rejected
scale=246.5
Probability and cumulative densities functions @ he els selected

The graph shows the best visibility in
modeling. The three best models that bes
and CDF. According to Figure 4 for CDF'g
distribution largely deviates from t

N been presented in the form of PDF
778, the Skewed Cauchy (skewcauchy)
e lost power data so cannot be considered a
better model for the PDF distrj istributed power due to transmission network
outages. Figure 3, Figure 4, Fi re 6 show the respective PDF and CDF of the
number of outages, the dug @ D , the power lost due to outages, and the cumulative
powers of the source% g odels that best characterize them.

0.025 ~ ——- dweibull distribution
Sahay & —— Beta distribution

N Lognormal distribution
number of outages
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Journal of Sustainable Development of Energy, Water and Environment Systems 9



Barate, M., Palanga, E. k. T. G., et al.
Stochastic Characterization of Faults in Electrical...

Year 2024
Volume 13, Issue 1, 1120531

-7~

1.0 4 - dweibull CDF distribution
: Beta CDF distribution
——~= lognorm CDFdistribution
—— number of outages o~
0.8 1
0.6 1
(¥
a
o
0.4 1
0.2 1
0.0 1
o 20 40 60 80 100
number of outages
Figure 3. PDF and CDF qumber of outages
A
—— beta distribution
0.0005 i. — = Exponential distribution
A «  Erlang distribution
A
i ] Total power sources
L
L
oooos{ 1\
[
i
!
!
|
0.0003 i
o |
& i
0001 A
|
0.0000 T

I
4000 6000 8000
Dwuration of cutages{min})

(@)

o 2000

10000 12000

Journal of Sustainable Development of Energy, Water and Environment Systems

10



Barate, M., Palanga, E. k. T. G., et al.
Stochastic Characterization of Faults in Electrical...

Year 2024

Volume 13, Issue 1, 1120531

10 1
0.8
0.6 -
L
fat
o
0.4 1
0.2
beta CDF distribution
=== Exponential CDF distribution
Erlang CDF distribution
0.0 1 = Dwuration of outages
0 2000 4000 £000 800 10 12000
Duraticn of outages {mj
Figure 4. PDF and DCF mo outa duration
=== Skewnormal distribution
Exponormal distribution
0.007 — Skewcauchy distribution
lost electrical power
0006 4
0.005
L 0,004 4
o
03
0.001
i
0.000 T - T

200
lost electrical power(MW)

(@)

Journal of Sustainable Development of Energy, Water and Environment Systems

11



Barate, M., Palanga, E. k. T. G., et al.
Stochastic Characterization of Faults in Electrical...

Year 2024
Volume 13, Issue 1, 1120531

10d 7" Skewnormal distribution
Exponormal distribution
= Skewcauchy distribution
—— lost electrical power CDF
0.8 4
0.6 4
L
fa
o
04 4
0.2 4
0.0 4
T T T
o 100 200
lo: SR Wi

and RCF modelling of lost power

dweibull distribution
beta distribution

rayleigh distribution
Total power sources

o 20000 40000 60000

80000

Total power sources (MW)

(@)

100000 120000

Journal of Sustainable Development of Energy, Water and Environment Systems

12



Barate, M., Palanga, E. k. T. G., et al. Year 2024

Stochastic Characterization of Faults in Electrical... Volume 13, Issue 1, 1120531
104 7" dweibull CDF distribution
- Beta CDF distribution
——=~ Rayleigh CDF distribution aF---
— CDF of Total power sources £
P
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e
—
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Total power sources |

Figure 6. PDF and DCF Bof totdhsources

Choosing the model that best fits the dat

Chi-2 tests and RMSE calculatifins on the®CDF were used to select the best model to
characterize our data. The resultg6f tRgse teQts are shown in Table 3. For total source power,
all functions were rejected by t 0 test. But the Chi-2 test and the RMSE value put
the double Weibull (dWei tiongn the first place. As for Power not supplied due to
value put the Exponentially modified Gaussian
(Exponormal) distrib place, followed by Skewcauchy. Although the RMSE
value of the Expiagntiglgtus tion was low for outage duration, it was rejected by the
Kolmogorov test s to rank the other two. The Erlang function won out. As for the

number of ti fictilt to decide with both tests The Kolmogorov test should be used.
e LognBuwggVlaw wins out over the Kolmogorov test, which puts double Weibull
ahead wit .8% Buccess rate for a P-value of 0.83 against Lognormal with a 94.6% success

0.56. Considering the P-values of the Kolmogorov test, the Weibull
ighs the Lognormal distribution. Considering the RMSE, that of the Weibull
lower than that of the Lognormal distribution. Assuming the difference in chi-
een the two distributions, the Weibull model can be placed first, followed by
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Table 3. Chi-2 test results

Data distribution chi_square RMSE Rang
Number of Lognormal 4.382924 0.128426 2“2
outages Bqta 4.435108 0.127705 3"

dWeibull 4.644737 0.117384 Ist

Duration of Erlang 4.267320 0.171638 IS;
outages Beta . 4.282475 0.17166 2"

Exponential 67.684226 0.163108 3rd

Exponnormal 2.129430 0.13666 !

Power lost Skewcauchy 8.960681 0.14507 nd
Skewnormal 30.814606 0.16197

dWeibull 36.928641 0.02587 N
Power sources Beta 73.006323 0.063119
Rayleigh 87.413172 0.07388

Probability density functions retained after the study

According to the study, cumulative source and impg
outage data (duration of outage, number of outages, and

ot predictive, whereas
are, as shown in Table 4.

Table 4. Fitted

DATA Functions parameters
Number of
outages described c=1.2997, loc=38.4972
by dWeibull scale=15.1662
distribution

Duration of kyck—1g (=A%) k=1.4718,

outages described o with loc= 35 4686
by Erlang 1/scale scale= 1358.59
distribution
Power lost 1 x—1/K K=7.28039,
1 Gelk)erfe-=55 loc=44.6098
2K scale=15.71597

PMUs. As the field of study is not the same, then the models that describe power
s can vary depending on the systems and the source of the data. The prediction of
sources can only be based on the study of data from these sources taken individually, as shown
by [21]. The Weibull model for characterizing fault data in a network, proposed by [29] , is
still with the results found. Because the transmission network has hybrid sources. The results
show that data from network dispatcher reports can help predict outages number, and the
energy a network can lose as a result of a power grid failure. They can also help predict the
duration of outages in the transmission network. So the non-predictive nature of SCADA data
in the power grid shown by [7] is no longer verified if static methods are used. SCADA data
and data from protective device readings can therefore make an effective contribution to the
prediction of outages in the transmission grid.



CONCLUSION

In this paper, to avoid blackouts in the transmission network and to save on energy losses
due to repetitive breakdowns, a stochastic statistical analysis has been performed on ECB
network outage data. The Kolmogorov-Smirnov test and model choice estimators such as AIC,
BIC, and SSE were used to select the best models describing the PDFs of the data studied. The
three best of these models are retained. The CDFs passed the Chi-2 test and the RMSE error
estimation, and with an analysis of the results, the best models that characterize the data studied
are retained. A rejection of the total power of ECB sources in the Kolmogorov-Smirnov test
indicates that the use of separate source powers would be the best choice in characterizing ECB
source data. The number of failures is well modeled with the double Weibull function, followed
by the duration of failures and the power lost by these failures respectively usin
function and the Exponormal function.

These models will enable us to determine predictive models for the number

intelligent. The question that may arise is the accuracy of the reports, wh
quality. This work, although interesting for the security of the entirgmmg
to locate the breakdowns of the transmission network. The contin
focus on modeling the data by taking into account the topolo
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