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ABSTRACT 
Electrical energy is a key factor in the development of any nation. Demand has been rising in 
recent years. This is putting existing power networks in difficulty, as they have not anticipated 
this meteoric rise. Blackouts occur daily and hurt the socio-economic development of nations, 
especially the most vulnerable. A predictive network outage solution would contribute 
effectively to better transmission network planning. Unfortunately, outage data for conventional 
networks are based solely on dispatcher reports and are difficult to exploit. This is the case for 
the Electrical Community of Benin transmission network. Understanding the predictive nature 
of this data would help implement fault prediction algorithms in this network. This paper aims 
to model outages and production in the Electrical Community of Benin power grid using 
probability laws. The objective is to contribute to the security of the electricity transmission 
network. Predicting the number of outages, their duration and the overall power lost will allow 
dispatchers to adjust electrical energy sources to avoid blackouts and save on electrical energy 
to impact the cost of producing electrical energy. The Kolmogorov Smirnov test, the error 
estimation using Akaike's information criterion and Bayesian information criterion on the one 
hand, and the Chi-2 test and the error estimation using the Root Mean Square Error on the other, 
were used to fit Benin Electrical Community network outages and accumulated sources using 
Weibull's law, outage duration using Erlang's law and energy lost using the Exponential law. 

KEYWORDS 
Transmission grids, fault prediction algorithms, outage durations, stochastic characterization. 

INTRODUCTION 
Electrical energy is a development vector for every nation. It contributes to their economic 

and social development. But power cuts are a major brake on development. A study carried out 
in Indonesia shows that a 1% increase in the frequency of power cuts leads to a 0.055% drop 
in productivity per worker, and a 0.061% drop in value added per worker. Similarly, power 
outages reduce labor productivity and losses, which amount to around 4.91 million USD per 
year [1]. The impacts of power grid failures are well known in the literature, especially the 
major worldwide failures described in [2] and [3]. Most of these outages are caused by line 
tripping, protection system malfunctions, power oscillations, and voltage instability, as well as 
system splitting and collapse [4]. Among these, frequency drop and phase shift cannot be 
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prevented by system operating actions, whereas overloads and transmission voltage drops can. 
Given that inaccurate identification of a fault point can delay network recovery time, resulting 
in economic losses and customer dissatisfaction [5], It seems necessary to consider structural 
and reliable mechanisms to predict network failures. For example, predicting cascading faults 
would effectively manage voltage instability during cascading [6]. 

As the study carried out by [7] shows a weak predictive character of SCADA data in the 
transmission power system, an analysis based on event report data coupled with operating data 
of a conventional SCADA-supervised power system is required. The aim is to set up a 
predictive system that would enable players in the field to anticipate outages and minimize 
their impact, to contribute effectively to the development of any nation, in line with one of the 
criteria of smart grids [8]. 

 A survey carried out by [9] showed that the breakdowns by region in the world in 2011 put 
sub-Saharan Africa in fourth place, with 210 major outages lasting 7.5 hours per outage. The 
transmission networks of Togo and Benin are no exception. A study carried out on the 
Electrical Community of Benin (ECB) network showed that between 2015 and 2018 there were 
136,487 outages, or 3.89 outages per hour [10]. Given these facts about the ECB transmission 
network, an outage prediction solution would enable stakeholders in the field to prioritize 
certain power transmission lines in both countries (health, the army, government services, and 
certain essential neighborhoods...), to minimize the impact of outages and prevent blackouts of 
the entire network. Because a minor interruption would affect a country's critical infrastructure 
[11]. 

For the characterization of electric power operating data, there are bottom-up methods, 
which combine statistical and engineering methods, and top-down methods, which combine 
economic and technological methods [4]. Statistical analysis effectively contributes to 
highlighting the predictive nature of a system or the data of a system [12]. Failure Modes, 
Effects, and Criticality Analysis is a widely used qualitative risk analysis method across various 
industrial and service applications [13]. For this analysis, probabilistic risk assessment (PRA) 
methods are gaining increasing attention in the context of high-voltage transmission network 
operations, as they offer a new approach to assessing safety in power system operations. This 
is due to the diversity of renewable energy sources connected to the grid, which tends to render 
deterministic methods for evaluating power system security obsolete [14]. In this context, [15] 
proposed a new PRA methodology aimed at assessing operational risk, measured by the 
probability of tripping a set of lines within a 10 to 15-minute interval. In [16], the practical 
method of risk probability is studied based on the failure probability of key equipment by 
defining the equipment factor and the failure factor. The method for evaluating risks and 
hazards in network planning is studied by defining the social influence factor and the loss-of-
load factor. The methods applied to the risk assessment of the Shenzhen network are reasonable 
and practical. In [17], authors analyzes the interactions between protection system components 
and the power network under extreme events involving simultaneous faults and cascading 
failures. The proposed risk assessment considers detailed reliability models of the protection 
system components, including circuit breakers and protective relays. The effectiveness of the 
proposed risk assessment method is demonstrated using a modified 9-bus system and the IEEE 
68-bus system. Risk-based electricity dispatching has been proposed as a viable alternative to 
security-constrained dispatching to reduce power grid costs and help better understand 
significant hazards [18]. A high penetration of renewable energy has caused stochastic power 
injection at the interface between the transmission and distribution systems [19]. As a result, 
stochastic analysis remains one of the most reliable methods for characterizing electrical 
energy data. Stochastic processes are mathematical models describing the behavior of evolving 
random variables [20]. Electrical data has these behaviors, which can be modeled by these 
processes. For statistical methods, probability density functions (PDFs) are commonly used. 
Mathematical models for characterizing these PDFs are numerous and varied.    
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For sources, [21] proved that among the set of probability distribution functions such as 
Gaussian, Skewnormal, Rayleigh, and Exponential, the Skewnormal function best describes 
BEC source data. Similarly, of the Gaussian, Skewnormal, and Weibull distributions used to 
characterize imports, Weibull holds sway for the TCN source and Skewnormal for the 
VRA/CIE source. The Kolmogorov-Smirnov test and performance indicators such as root 
Mean Square Error (RMSE) and coefficient of determination (R2) were used. For the prediction 
of wind power production, [22] have shown that the mixture of Weibull and extreme value 
distributions (mixture of Gumbel, Freche, and Weibull) describes unimodal and bimodal wind 
behavior, while the mixture of extreme value and Lognormal distributions describes unimodal 
bell-shaped wind behavior.  

Regarding network load, the generalized form of the Weibull distribution model provides 
a global characterization of billing data and household consumption [23]. Whereas, the Weibull 
and Log-normal distributions fit individual consumption in dwellings [24]. Each bus of the 95 
IEEE network was well-fitted with a Gaussian mixture [25]. The estimation of the maximum 
demand in the low-voltage electrical network is successfully simulated using the Monte Carlo 
model, taking into account the statistical deviation of the demand of each half-hour from a 
gamma distribution [26]. 

 Electrical network faults are also characterized in the literature. In [27], it proved that the 
Weibull distribution makes it possible to specify in a probabilistic manner the faults of 
equipment such as circuit breakers and current transformers during stochastic short-circuit 
events generated in the electrical network. The results indicate that the defects thus modeled 
are short-term. This does not generally characterize the defects in the transmission networks of 
developing countries. In [28], it is shown the non-Gaussian nature of the errors in PMUs. With 
the adjustment criteria of AIC, BIC and that of the modules. The errors in the PMUs were 
adjusted with a semiparametric Gaussian mixture. In [29], to model the resistance of electrical 
distribution networks with photovoltaics as backup against network failures, the Weibull 
function was selected as the best model. The probability laws are used as a performance 
criterion by taking the parameters of long-term failures. The data is not consistent enough to 
reflect the reality on the ground. 

The transmission network is the backbone of the electricity network. For better planning, it 
is necessary to have the overall profile of the source, load faults, and its characters. To minimize 
the error rate in the choice of the model that best describes the quantities thus cited, it is clear 
that a single test with one or two adjustment criteria remains insufficient. This article proposes 
an analysis of transmission network failures based on all the data of sources, loads, and general 
parameters of ECB network failures with two tests and several adjustment criteria as selection 
criteria. Knowing that an imbalance between the load and the source can cause a frequency 
imbalance and lead to a total blackout, predicting holistically, the failures of the electrical 
network, the duration of these failures, and the lost power would contribute to quantifying the 
reliability of the electrical transmission network and save on the price of electrical energy. 

The data modeling method will be presented in section two, followed by the study results 
in section three.  

 

METHODS 
Several methods are used today to characterize electrical data: the graphical method, the power 

density method, etc. [12], which determine the constants of the chosen distribution function. The 
machine learning approach is being increasingly studied, which allows several probability density 
models to be proposed so that the machine can propose the models that best describe the data 
under study. This study is based on this approach. The data to be modeled will be presented, 
followed by the method for modeling these data. It should be noted that the probability density 
will be calculated with the SciPy module in Python. The calculated probability density functions 
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are in normalized form. To scale, you must use the loc and scale parameters according to equation 
(1). 

 𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) =
𝑝𝑝𝑝𝑝𝑝𝑝(𝑦𝑦)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

   𝑤𝑤𝑤𝑤𝑤𝑤ℎ    𝑦𝑦 =
𝑥𝑥 − 𝑠𝑠𝑙𝑙𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 (1) 

Presentation of Electrical Community of Benin  
The Electrical Community of Benin (ECB) manages the Togo and Benin electricity 

transmission networks. The network comprises 1,288.3 km of high-voltage lines, with transformer 
stations with a total capacity of 397.16 MVA. The network is supplied by renewable sources 
(hydroelectric and solar), thermal sources, and two import lines from the Volta River Authority 
(VRA) from Ghana and the Transmission Company of Nigeria (TCN). The network is managed 
using the N-1 method and a SCADA/EMS (Supervisory control and data acquisition/Energy 
Management System). A section of the ECB network in Togo is presented by [30]. It is 
represented by Figure 1. 

 

 
Figure 1. ECB network of Togo [30] 

 

Data modeling method 
The data to be modeled are ECB data from February 2014 to December 2018. These data 

come from SCADA measurement points and dispatcher incident reports. These data have 
undergone preprocessing to obtain the study data. Data from the SCADA database is hourly. And 
the incident reports are weekly. The preprocessing consisted of summing the hourly data (sources 
and consumption) to obtain the weekly data. The two types of data were then concatenated in the 
date column to find the study data. This processing was carried out using Anaconda's Jupiter 6.4.8. 
The study data consists of 204 rows and 4 columns. The statistical description of the data used is 
shown in Table 1. 

The probability densities of the data were run through Kolmogorov Smirnov tests with Akaike 
Information Criterion (AIC) and Bayesian Information Criterion (BIC) error estimators compared 
to existing models. This is followed by a test of cumulative Chi-2 densities and the root mean 



Barate, M., Palanga, E. k. T. G., et al. 

Stochastic Characterization of Faults in Electrical…  
Year 2024 

Volume 13, Issue 1, 1120531 
 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 5 

 

square error (RMSE) estimator to select the model that best characterizes the data studied. This 
method is described by the flow chart in Figure 2. 

 
 
 
 
 
 

Table 1. Descriptive statistics 
 

 
Total power 
from sources 

(MW) 

Number of 
triggers 

Duration of 
outages 
(min) 

Non distribute 
power 
(MW) 

mean 76293,77 40,11 2035,16 159,03 
std 24238,59 17,65 1815,60 110,38 
min 6935,29 6 46 22,67 
25% 54921,68 27,75 826 78,49 
50% 74261,75 40 1645,5 122,39 
75% 98405,06 51 2644 209,05 
max 119392,98 110 12172 545,84 

Coefficient of 
Skewness 0,02 0.56 2.35 1.26 

Coefficient of 
kurtosis -1,06 0,51 7.56 0.995 

 

 
Figure 2. Methodology diagram 
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Theoretical foundations of the tools used 
The following describes the tools used in this paper to model the data. 
 
Kolmogorov-Smirnov hypothesis test.  The Kolmogorov-Smirnov test is a hypothetical test 

used to determine whether a sample follows a given distribution known by its continuous 
distribution function, or whether two samples follow the same distribution. The reference 
hypothesis H0 and the opposite hypothesis follow equation (2). 

 
 �𝐻𝐻0 →  𝐹𝐹∗(𝑥𝑥) = 𝐹𝐹(𝑥𝑥)

𝐻𝐻1 → 𝐹𝐹∗(𝑥𝑥) ≠ 𝐹𝐹(𝑥𝑥)  (2) 

 
Where: F*(x), and F(x) are the empirical and theoretical functions respectively. 
 
In the case of curve fitting of given functions or models, the Kolmogorov-Smirnov (K-S) 

statistic is used as a relative indicator. The K-S test is best at estimating errors in curve-fitting 
models. It represents the level of rejection of the null hypothesis (H0) of the Kolmogorov-Smirnov 
test. The lower the KS value, the higher the acceptance rate of the null hypothesis. When the K-S 
value is less than 0.05, you are informed that the mismatch is significant. The P_value determines 
whether the H0 hypothesis is accepted or not. If the P_value is less than 0.05, the H0 hypothesis 
is rejected; otherwise, it is accepted. 

 
Akaike Information Criterion and Bayesian Information Criterion.  When it comes to choosing 

a model to describe data, it's difficult to choose from the ever-growing pool of models described 
in the literature. The Akaike Information Criterion (AIC) and Bayesian Information Criterion 
(BIC) are criteria for choosing the right model, striking a balance between the adequacy and 
complexity of the model that best describes the data under study. They are powerful measures of 
model selection in regression analysis. They enable the selection of simple models that best 
describe the data under study. AIC finds a model that maximizes the likelihood of the data while 
taking into account the number of parameters used. It is described by equation (3). 

  
 𝐴𝐴𝐴𝐴𝐴𝐴 = − log(𝐿𝐿) + 2𝑘𝑘 (3) 

 
Where: L represents the maximum likelihood and k the number of parameters including the 

intercept and any additional predictors. 
Like the AIC, the Bayesian Information Criterion (BIC) is another model selection criterion 

that takes into account both model fit and complexity. The BIC is based on Bayesian principles 
and provides a higher penalty for model complexity than the AIC. The BIC is given by equation 
(4). 

 𝐵𝐵𝐴𝐴𝐴𝐴 =  −2 log(𝐿𝐿) + 𝑘𝑘𝐿𝐿𝑙𝑙𝑘𝑘(𝑛𝑛) (4) 
 
Where: L represents the maximum likelihood, k is the number of parameters including the 

intercept and any additional predictors, and n is the sample size. The lower their values, the better 
the model describes the data under study. 

 
Sum of squared errors.  The sum of squared errors (SSE) is a measure of the deviation between 

the data and an estimation model. It is commonly referred to as deviance. The lower the SES, the 
tighter the fit of the model to the data used. It is used as an optimality criterion in parameter and 
model selection when fitting data. It is defined by equation (5). 

 
 𝑆𝑆𝑆𝑆𝑆𝑆 = � (𝑋𝑋𝑖𝑖 − 𝑋𝑋�)

𝑛𝑛

𝑖𝑖=1
 (5) 
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Chi-2 goodness-of-fit test.  The chi-2 test is a goodness-of-fit test that checks whether a sample 

of a random variable F(x) gives observations comparable to those of a defined probability law P. 
The null hypothesis (H0) is that the random variable F(x) follows the probability law P. The null 
hypothesis here is that the observation is sufficiently close to the theory. The null hypothesis (H0) 
is that the random variable F(x) follows the probability law P. The null hypothesis here is that the 
observation is sufficiently close to the theory and is generally rejected when p ≤ 0.05. 

 
Root mean square error.  The root-mean-square error (RMSE) in statistics is an indicator that 

best measures the difference between the actual observed distributions and the predicted 
probabilities for each observation. The lower the RMSE value, the more effective the model is at 
modeling the data. The value of the RMSE is given by equation  

(6) [12]. 
 
 

𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆 = �
1
𝑛𝑛
�(𝐹𝐹𝑖𝑖∗ − 𝐹𝐹𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

�

1
2�

 
 
(6) 

 
Where: Fi* and Fi represent the empirical and theoretical functions of the observed models, 

respectively. In this case, the CDF.  
 

RESULTS AND DISCUSSION  
This section describes the data modelling results in PDF and CDF and presents the test 

results for the best model choice. 

Best models selecting 
PDF functions have been chosen for each of the quantities studied (see Table 2). The literature 

models passed the Kolmogorov-Smirnov tests, the Akaike Information Criterion (AIC) and 
Bayesian Information Criterion (BIC) convenience test, and the sum-of-squares-errors estimation 
test. Considering the Kolmogorov-Smirnov test, only the Erlang and Beta distributions apply to 
the outage duration data. For the number of outages, all the distributions found are acceptable. As 
for the non-distributed power data due to outages, the Weibull and Lognormal distributions are 
accepted by the Kolmogorov test, while the last three are rejected. For the sources, even if the 
Kolmogorov test passes for the Weibull distribution with a rate of 90.1%, the P-value is less than 
0.05, which allows us to reject. According to this test, no distribution can be used to model total 
data from ECB sources. Therefore, to use the data from the ECB sources, they will have to be 
taken independently, according to the studies carried out by [21]. All these results are shown in 
Table 2. The choice of results was made by first comparing the statistics of the Kolmogorov test. 
The lower the value of the statistic, the higher the success rate. Followed by SES, AIC, and BIC 
in succession. That said, in the case of outage durations for example, the Exponential distribution 
has the lowest AIC value, but its statistic value is 0.102, i.e. a Kolmogorov test success rate of 
89.8% against the Erlang and Beta functions with successive AIC values of 2205.59, 2207.31 for 
a statistic of 0.045, i.e. a success rate of 95.5%, putting these two models ahead of the Exponential 
model. 
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Table 2. Test results for model selection 

 
Probability density functions Model chose estimators Kolgoromorov Smirnov 

test 

models Distributions 
parameters SSE AIC BIC Stati

stic 
p-

value Decision 

 

Erlang 
k=1.4718, 

loc= 35.4686 
scale= 1358.59 

2.71e-07 2205.59 -4153.67 0.05 0.782 Accepted 

Beta 

a=1.47096 
b=3.35 e+9 

loc= 35.50642 
scale=4.55e+12 

2.71e-07 2207.31 -4148.31 0.05 0.779 Accepted 

Exponatial loc=46.0 
scale=1989.158 4.79e-07 2132.69 -4042.78 0.10 0.0276 Rejected 

Rayleigh loc= -653.349 
scale= 2.29 e+3 5.05e-07 2477.04 -

4032.14 0.14 0.0004 Rejected 

dWeibull 
c=1.021 

loc= 1642.74 
scale= 1206.65 

5.33e-07 2357.95 -4015.53 0.14 0.0005 Rejected 

 

dWeibull 
c=1.2997 

loc=38.4972 
scale=15.1662 

0.0043 1139.39 -2180.32 0.04 0.83 Accepted 

Lognormal 
s=0.2119 

  loc=-42.515 
scale=80.7935 

0.0044 1084.17 -2176.56 0.05 0.56 Accepted 

Beta 

a=9.20259 
b=1.076 e+9 
loc=-13.70973 
scale=6.29 e+9 

0.0044 1084.61 -2171.01 0.06 0.52 Accepted 

Gamma 
a=9.20 

 loc=-13.709 
scale=5.848 

0.0044 1082.61 -2176.32 0.06 0.52 Accepted 

Skew 
normal 

a= 2.529     
loc= 20.461 

scale= 26.379 
0.0044 1088.15 -2175.14 0.06 0.47 Accepted 

 

Expo-
normal 

K=7.28039 
loc=44.6098 

scale=15.71597 
0.0002 1388.36 -2860.94 0.04 0.88 Accepted 

Skewed 
Cauchy 

a=0.799352 
loc=54.232 

scale=42.6779 
0.0002 1412.03 -2.857.96 0.09 0.051 Accepted 

D
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Skew 
normal 

a=16.44380 
loc=32.909 

scale=167.422 
0.0002 1388.53 -2799.49 0.11 0.010 Rejected 

 

dWeibull 
c=2.1837 

loc=75405.89 
scale=24581.95 

7.71e-09 2489.80 -4879.89 0.09 0.032 Rejected 

Beta 

a=2.8054 
b=1.59529 

loc= 904.0497 
scale= 1.19 e+5 

1.09e-08 2390.83 -4802.13 0.17 
 

0.010 
 

Rejected 

Rayleigh loc=3.60 e+4 
scale=3.32 e+4 1.14e-08 ∞ -4804.96 0.19 0.000 Rejected 

Lognormal 
s= 0.037 

loc=-5.605 e+5 
scale=636437.6 

1.17e-08 2425.41 -4794.25 0.16 
 

0.000 
 

Rejected 

Gamma 
a=9618.08, 

loc=-2.294 e+6 
scale=246.5 

1.18e-08 2419.20 -4793.52 0.17 
 

0.000 
 

Rejected 

 

Probability and cumulative densities functions of the best models selected 
The graph shows the best visibility in terms of mathematical model selection for data 

modeling. The three best models that best model data have been presented in the form of PDF 
and CDF. According to Figure 4 for CDF greater than 0.78, the Skewed Cauchy (skewcauchy) 
distribution largely deviates from the CDF of the lost power data so cannot be considered a 
better model for the PDF distribution of undistributed power due to transmission network 
outages. Figure 3, Figure 4, Figure 5, and Figure 6 show the respective PDF and CDF of the 
number of outages, the duration of outages, the power lost due to outages, and the cumulative 
powers of the sources and those of the models that best characterize them. 

 

(a) 
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(b) 

Figure 3. PDF and CDF modeling of the number of outages 

 

 

(a) 
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(b) 

Figure 4. PDF and DCF modelling of outage duration 

 

 

(a) 
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(b) 

Figure 5. PDF and DCF modelling of lost power 

  

 

(a) 
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(b) 

Figure 6. PDF and DCF modelling of total sources 

 

Choosing the model that best fits the data 
Chi-2 tests and RMSE calculations on the CDF were used to select the best model to 

characterize our data. The results of these tests are shown in Table 3. For total source power, 
all functions were rejected by the Kolmogorov test. But the Chi-2 test and the RMSE value put 
the double Weibull (dWeibull) function in the first place. As for Power not supplied due to 
outages, the Chi-2 test and the RMSE value put the Exponentially modified Gaussian 
(Exponormal) distribution in the first place, followed by Skewcauchy. Although the RMSE 
value of the Exponential distribution was low for outage duration, it was rejected by the 
Kolmogorov test, enabling us to rank the other two. The Erlang function won out. As for the 
number of triggers, it's difficult to decide with both tests The Kolmogorov test should be used. 
For Khi-2, the Lognormal law wins out over the Kolmogorov test, which puts double Weibull 
ahead with a 95.8% success rate for a P-value of 0.83 against Lognormal with a 94.6% success 
rate for a P-value of 0.56. Considering the P-values of the Kolmogorov test, the Weibull 
distribution outweighs the Lognormal distribution. Considering the RMSE, that of the Weibull 
distribution is lower than that of the Lognormal distribution. Assuming the difference in chi-
square between the two distributions, the Weibull model can be placed first, followed by 
Lognormal. 
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Table 3. Chi-2 test results 

Data distribution chi_square    RMSE     Rang 

Number of 
outages 

Lognormal 4.382924 0.128426 2nd 
Beta 4.435108 0.127705 3rd 

dWeibull 4.644737 0.117384 1st 

Duration of 
outages 

Erlang 4.267320 0.171638 1st 
Beta 4.282475 0.17166 2nd 

Exponential  67.684226 0.163108 3rd 

Power lost 
Exponnormal 2.129430 0.13666 1st 
Skewcauchy 8.960681 0.14507 2nd 
Skewnormal 30.814606 0.16197 3rd 

Power sources 
dWeibull 36.928641 0.02587 1st 

Beta 73.006323 0.063119 2nd 
Rayleigh 87.413172 0.07388 3rd 

 

Probability density functions retained after the study 
According to the study, cumulative source and import data are not predictive, whereas 

outage data (duration of outage, number of outages, and power lost) are, as shown in Table 4. 
 

Table 4. Fitted PDF for data 

 

 This result confirms the non-Gaussian character of power system failures shown by [28] in 
the case of PMUs. As the field of study is not the same, then the models that describe power 
grid failures can vary depending on the systems and the source of the data. The prediction of 
sources can only be based on the study of data from these sources taken individually, as shown 
by [21]. The Weibull model for characterizing fault data in a network, proposed by [29] , is 
still with the results found. Because the transmission network has hybrid sources. The results 
show that data from network dispatcher reports can help predict outages number, and the 
energy a network can lose as a result of a power grid failure. They can also help predict the 
duration of outages in the transmission network. So the non-predictive nature of SCADA data 
in the power grid shown by [7] is no longer verified if static methods are used. SCADA data 
and data from protective device readings can therefore make an effective contribution to the 
prediction of outages in the transmission grid. 

DATA PDF  theorical function Functions parameters 
Number of 

outages described 
by dWeibull 
distribution 

𝑝𝑝(𝑥𝑥, 𝑠𝑠) =
𝑠𝑠
2

|𝑥𝑥|𝑐𝑐−1𝑠𝑠−|𝑥𝑥|𝑐𝑐 c=1.2997, loc=38.4972 
scale=15.1662 

Duration of 
outages described 

by Erlang 
distribution 

𝑝𝑝(𝑥𝑥, 𝑘𝑘, 𝜆𝜆) = 𝜆𝜆𝑘𝑘𝑥𝑥𝑘𝑘−1𝑒𝑒(−𝜆𝜆𝜆𝜆)

(𝑘𝑘−1)!
  with 

𝜆𝜆 = 1/𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

k=1.4718, 
loc= 35.4686, 

scale= 1358.59 

Power lost 
described by 
Exponormal 
distribution 

𝑝𝑝(𝑥𝑥,𝐾𝐾) =
1

2𝐾𝐾
𝑠𝑠
� 1
2𝐾𝐾2−

𝑥𝑥
𝐾𝐾� �𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐(−𝑥𝑥−1 𝐾𝐾⁄

√2
)
 

 

K=7.28039, 
loc=44.6098 

scale=15.71597 
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CONCLUSION 

In this paper, to avoid blackouts in the transmission network and to save on energy losses 
due to repetitive breakdowns, a stochastic statistical analysis has been performed on ECB 
network outage data. The Kolmogorov-Smirnov test and model choice estimators such as AIC, 
BIC, and SSE were used to select the best models describing the PDFs of the data studied. The 
three best of these models are retained. The CDFs passed the Chi-2 test and the RMSE error 
estimation, and with an analysis of the results, the best models that characterize the data studied 
are retained. A rejection of the total power of ECB sources in the Kolmogorov-Smirnov test 
indicates that the use of separate source powers would be the best choice in characterizing ECB 
source data. The number of failures is well modeled with the double Weibull function, followed 
by the duration of failures and the power lost by these failures respectively using the Erlang 
function and the Exponormal function.  

These models will enable us to determine predictive models for the number and duration of 
outages in the Togo and Benin transmission networks. This will make the network increasingly 
intelligent. The question that may arise is the accuracy of the reports, which can influence data 
quality. This work, although interesting for the security of the entire network, does not allow 
to locate the breakdowns of the transmission network. The continuation of this work would 
focus on modeling the data by taking into account the topology of the ECB network. 
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NOMENCLATURE 

Abbreviations 
ECB Electrical Community of Benin 
PDF Probability Density Function 
CDF Cumulative Density Function 
AIC : Akaike Information Criterion 
BIC Bayesian Information Criterion 
SSE Sum of Squared Errors 
RMSE Root Mean Square Error 
CERME « Centre d'Excellence Régional pour la Maîtrise de l'Electricité » 
SCADA Supervisory Control and Data Acquisition 
PMU Phasor Measurement Unit 
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