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ABSTRACT 
Energy prices have fluctuated significantly due to global events like the COVID-19 pandemic 
and geopolitical conflicts, with future projections suggesting continued volatility. This study 
explores how these pricing variations affect the costs and energy consumption of a smart energy 
management hybrid poly-generation system. For this purpose, a genetic algorithm is applied to 
optimize energy management under different market conditions (COVID-19, the war, the 
Business as Usual situation, and future price trends for 2030). The methodology also includes a 
sensitivity analysis, comparing Stable vs. Critical cases in Spain. The results demonstrate a 23% 
reduction in operational costs and an 18% decrease in energy importation under Critical 
conditions, while demand shifting during peak periods reduced peak electricity costs by up to 
59%. These findings highlight the importance of adaptive, intelligent energy management 
systems for reducing costs and enhancing sustainability in volatile market conditions. 

KEYWORDS 
Sensitivity analysis; Genetic Bio-inspired algorithms; Renewable integration; Energy management; 
Electricity market scenarios. 

INTRODUCTION 
Efficient energy management represents a major challenge, characterized by the complexity 

derived from multiple factors, including the variability of natural resources, diversification of 
energy sources, fluctuating demand, and the increasing integration of renewable technologies and 
Electric Vehicles (EVs) as highlighted in [1]. Similarly, [2] discusses how the transition to 
sustainable energy systems is compounded by similar challenges, with an emphasis on the 
integration of renewable energy sources and the need for advanced energy management 
strategies. In particular, the transition to a low-carbon energy system, as observed in the Nordic-
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Baltic region, exemplifies the complex interplay between different energy sources, demand 
variability, and geopolitical contexts [3]. Consequently, the need for Microgrids (MG) and smart 
grids has become imperative as the power grid and the electricity market undergo a gradual 
transition from a centralized to a more distributed model to meet the current challenges [4]. 
Despite the advances made with the implementation of MG, ranging from coordinated control 
strategies [5] to improvements in modelling [6], energy efficiency [7] and resource and demand 
management [8], significant opportunities remain for innovation in terms of system optimization, 
both in energy management and in equipment control, planning, and facility design [9]. 

In the field of strategies to improve these systems, methods have been investigated to optimize 
the planning of the combination of generation sources, with a significant emphasis on the search 
for scenarios of zero greenhouse gas emissions. For instance, a study on Benin's energy sector 
[10] demonstrates how integrating renewable energy sources, such as solar, wind, and 
hydropower, can significantly reduce CO2 emissions while achieving higher renewable energy 
penetration targets. Similarly, the evolution of power generation mixes globally, analyzed 
through system dynamics models, reveals the potential of clean energy adoption in meeting 
carbon neutrality goals [11]. Furthermore, the case of Ghana illustrates that increasing 
renewable energy penetration in the electricity sector can lead to substantial greenhouse gas 
emissions reductions, aligning with climate change mitigation objectives [12]. These studies 
thoroughly analyse the impact of incorporating renewable energies into the energy matrix, which 
is important for guiding policies and implementing strategies to promote the transition to more 
sustainable energy systems more resilient to climate change. Research such as [13] shows the 
economic viability of using renewable technologies when considering the optimal combination of 
energy generation and storage systems, such as pumped hydroelectric storage, lithium batteries, 
and EV batteries. Meanwhile, from an energy perspective, [14] emphasizes that energy savings 
play a fundamental role in enhancing hybrid renewable systems, with energy efficiency serving 
as a primary objective. This involves optimizing energy use to reduce waste and maximize 
system performance. Additionally, the importance of implementing energy efficiency 
measures in residential buildings has been extensively underscored, particularly in 
Mediterranean regions where climatic conditions, such as hot summers and mild winters, 
significantly influence energy consumption patterns [15].  These studies highlight the need for 
energy optimization packages tailored to specific climates to maximize efficiency and reduce costs 
in the residential sector. 

The current literature reflects significant interest in applying computational intelligence 
technologies to address MGs' operation, optimization, and energy control challenges. For 
instance, Artificial Neural Networks (ANN) combined with gravitational search algorithms 
improve load and price forecasting accuracy [16], hybrid neuro-evolutionary methods enhance 
wind power output prediction [17], and ANNs optimize catalytic processes for energy 
transitions [18]. Bio-inspired algorithms, based on processes and patterns observed in nature, have 
emerged as effective metaheuristics in optimization and prediction in a variety of contexts. 
Researchers have explored their application to improve the performance of renewable 
technologies compared to traditional approaches, as in the case of Maximum Power Point 
Tracking controllers using the Grey Wolf Optimizer (GWO) with lower curling effect, faster 
settling time for each irradiation level, and improvement of the system response [19]. Furthermore, 
comparative analyses have been performed between different optimization methods based on 
nature-inspired algorithms, such as Particle Swarm Optimization (PSO) and GWO, in the 
modelling of lithium-ion batteries [20], revealing remarkable enhancements in the model through 
the terminal voltage compared to the non-optimized model, with superior performance through 
the GWO. Also, [21] compares the performance of three bio-inspired algorithms, GWO, PSO, 
and Genetic Algorithm (GA) in the tuning of DC-DC Boost Converter PID Controller, with good 
overall performance after evaluating the system response under different input voltage and load 
changes. Other studies have explored optimal energy management in smart microgrids, 
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particularly in scenarios involving high penetration of EVs and distributed renewable sources, 
utilizing hybrid approaches such as GAs and analytic hierarchy process [22]. 

On the other hand, proper energy management is necessary in the progress towards the next 
stage of the energy transition. In this sense, it will be necessary that the household sector adapts 
flexibly to align energy consumption with the highly variable production patterns inherent to 
renewable energies [23]. Bio-inspired algorithms emerge as dynamic tools capable of addressing 
the complexity of energy systems. Along these lines, several researchers have explored their 
application in Hybrid Renewable Energy Systems (HRES) networks, developing methodologies 
that integrate ANNs optimization to improve system reliability and efficiency through PSO [24]. 
In turn, other studies have used these algorithms to estimate the optimal amount of biomass 
required in gasification plants to produce the necessary synthesis gas and cover the energy demand 
[25]. Even the efficiency of these approaches has been compared with [26] after implementing an 
evolutionary game-theoretic approach for an energy management model, with better results for 
[27]. 

Despite the progress made, there are still unresolved challenges in this field. For instance, most 
current approaches focus on optimizing the management of generated energy, neglecting the 
consideration of domestic demand and other key loads such as EVs, without establishing a bi-
directional adaptation. The growing role of EVs in HRES must be considered, especially after 
policy interventions in the European Union aimed at boosting the transition to electric technology 
[28]. 

Therefore, an issue of utmost importance today in the scientific community is to achieve 
energy management capable of adapting to the most uncertain factors present in HRESs: natural 
resources, user demand, and the electricity market. Therefore, this paper develops an innovative 
strategy to address complex problems in energy management, proposing the hypothesis of 
integrating the GA to determine optimal strategies for both electricity demand (household load 
and EV charging) and energy use, minimizing grid costs. For this purpose, a case study of a 
household in Valencia, Spain, is selected to validate the proposed methodology, using real data to 
increase the applicability and validity of the results. The household consists of a grid connection, 
a demand, and a PV installation to which an ESS and an EV are added to evaluate the proposed 
hypothesis's feasibility further. The proposed model is evaluated through a sensitivity analysis 
under various electricity market cost scenarios, including geopolitical conflicts, pandemic 
conditions, the Business as Usual (BAU) status, and future projections. Also, two cases, referred 
to as Stable and Critical, are considered to rigorously assess the model's robustness. Likewise, 
recent works also address the impact of external factors, such as global events like the COVID-
19 pandemic, on household energy consumption patterns, demonstrating that lockdowns led to 
significant increases in energy use at home due to lifestyle changes [29]. Such studies highlight 
the need for adaptive energy management models that can respond to shifts in demand caused by 
extraordinary circumstances. 

The implementation of the proposed model shows significant improvements in the operational 
efficiency of the MG, especially in the utilization of solar energy and batteries during Stable cases, 
as well as in the adaptability of the algorithm in Critical cases. This points towards smarter energy 
management that not only reduces costs but also improves the stability of the energy supply by 
dynamically adapting to variable situations and reducing the carbon footprint. Hence, the main 
objective of this work is to develop and validate an approach based on GAs through a sensitivity 
analysis of electricity market costs, which addresses these shortcomings to improve the 
operational efficiency of MG and advance the transition towards a cleaner and more sustainable 
energy system. The proposed work is organized as follows: section 2 presents the methodology 
with the system under study, and a description of the scenarios and cases considered, section 3 
provides the results, section 4 refers to the discussion of this application, and section 5 outlines 
the main conclusions and future work. 
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METHODS 
The following section provides a detailed overview of the methodology used in this study. 

Different software programs have been employed to conduct the research: FusionSolar has been 
used to collect experimental data from the real installation, System Operator Information System 
(ESIOS) has been employed for obtaining electricity market prices, Iberian Energy Market 
Operator - Portuguese Hub (OMIP) has been used for future price projections, while MATLAB 
has been employed to model the system under study and implement the GA. 

In this section, the characteristics of the MG are presented in detail, the various systems 
analysed, and the process of obtaining the experimental data. The configuration and adjustment 
of the GA parameters are also described. Finally, the scenarios and cases simulated, and the 
evaluation criteria of the proposed systems are explained, including analysis of power flows, costs, 
CO2eq emissions to the atmosphere, and computation time. It is worth mentioning that the case 
studies are based on a household consisting of a grid connection, a demand, and a PV installation 
to which an ESS and an EV are added to evaluate the proposed model's potential further. 

Figure 1 shows the workflow corresponding to the proposed hypothesis, which starts with the 
first data input step (stage 1), followed by the execution of the genetic algorithm (stage 2), and 
concludes with the model evaluation stage (stage 3). 

 

 
Figure 1. Methodology for the proposed optimized energy manager model 

The inputs and outputs of the model are explained as follows. 

System under study  
The MG consists of a solar PV installation, domestic demand, an ESS, an EV, and a grid 

connection that allows sending surpluses and receiving when it is not possible to meet the demand. 
Figure 2 shows the energy flow directions in the MG. 



Díaz-Bello, D. c., Vargas-Salgado, C., et al. 
Smart Energy Management for Hybrid Systems: A Genetic…  

Year 2025 
Volume 13, Issue 2, 1130536 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 5 

 

 

 
Figure 2. MG under study 

In the current installation, the loads (household demand and EV) are supplied in the following 
priority order: 

1. Demand is met using the energy generated by the PV installation. 
2. If the energy produced by the PV installation is insufficient to cover both demands, 

the ESS is called upon. 
3. If both the PV installation and the ESS fail to meet the demands, energy is imported 

from the grid. 
4. Situations involving surplus energy generated by the PV panels are first directed to the 

ESS. The surplus is injected into the grid for sale if the ESS is fully charged.  
This process ensures a continuous balance in energy supply and demand. 

Photovoltaic model 
Data obtained from a house located in Valencia, Spain, was employed to model the PV 

installation. This residence has a PV installation with a power of 4.2 kWp, consisting of two strings 
of six solar panels of 350 Wp each, arranged in series, with an MPPT assigned to each string. The 
solar panels are mounted with a slope of 20.5º and aN azimuth of 202º. The solar inverter 
connected to these panels has a capacity of 3.3 kW and has two MPPT inputs to manage power 
production optimally. 

Residential demand model 
The consumption data have been collected from the same residence located in Valencia, with 

TP-Link Tapo P100 for all devices, except the oven and the air conditioner with TAXNELE 
TVPS1-63T. A clear distinction between loads classified as 'variable' and 'fixed' has been made. 
Variable loads comprise those that are considered to be Demand Response (DR), that is, those 
flexible loads which consumption patterns can be modified without compromising the user's 
comfort. On the other hand, fixed loads include those that have been determined as not susceptible 
to modification, since altering them would directly impact the user's daily routine. This focus on 
load differentiation allows for a more specific understanding of consumption patterns and their 
potential for implementing effective energy management strategies. Table 1 presents in detail the 
classification of the equipment used in the installation and their respective installed power. 
 

Table 1. Power of the considered loads  

 
 

Measured average power in one hour [kW] 

Fix load 

Oil heater 1.55 
Radiation heater 1.19 

Television 0.15 
Fridge 0.08 
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Measured average power in one hour [kW] 
Microwave 1.21 

Oven 2.39 

Variable load 

Electric water heater 1.50 
Dishwasher 0.67 

Washing machine 0.90 
AC 2.80 

Total 12.44 
Contracted power 4.50 

Energy storage system model 
The ESS employed in this study is based on an installation located at the Renewable Energy 

Laboratory of the Polytechnic University of Valencia (LabDER-UPV). This system is composed 
of 24 lead-acid batteries, with a total energy storage capacity of 10.32 kWh. Each of these batteries 
has a nominal voltage of 2 V. MATLAB software was used to model the ESS using equations eq. 
(1), eq. (2) and eq. (3). This approach allowed an accurate representation of the ESS behaviour in 
the context of the study, thus ensuring the results' reliability and accuracy. 

 
𝑊𝑊ℎ𝑏𝑏𝑏𝑏𝑏𝑏_𝑚𝑚𝑏𝑏𝑚𝑚 = 𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏 ∗ 𝐶𝐶 (1) 

𝑊𝑊ℎ𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝜂𝜂𝑑𝑑 − 𝐸𝐸𝑑𝑑ℎ𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝜂𝜂𝑑𝑑  (2) 

𝑆𝑆𝑆𝑆𝐶𝐶 =
𝑊𝑊ℎ𝑏𝑏𝑏𝑏𝑏𝑏

𝑊𝑊ℎ𝑏𝑏𝑏𝑏𝑏𝑏_𝑚𝑚𝑏𝑏𝑚𝑚
 (3) 

 
Where 𝑊𝑊ℎ𝑏𝑏𝑏𝑏𝑏𝑏_𝑚𝑚𝑏𝑏𝑚𝑚  is the maximum energy capacity of the battery, 𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏  is the number of 

batteries, 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏  is the batteries voltage, 𝐶𝐶  is the batteries capacity, 𝑊𝑊ℎ𝑏𝑏𝑏𝑏𝑏𝑏  is the battery 
instantaneous energy, 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎 is the battery discharge energy, 𝐸𝐸𝑑𝑑ℎ𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎 is the battery charge 
energy, 𝜂𝜂𝑑𝑑 is the discharging battery efficiency, 𝜂𝜂𝑑𝑑 is the charging battery efficiency and 𝑆𝑆𝑆𝑆𝐶𝐶 is 
the battery State of Discharge. 

Electric vehicle model 
An EV has been integrated into the MG to further evaluate the feasibility of the strategy 

proposed as a hypothesis. For the EV simulation, the vehicle used in [30], the Nissan Leaf, which 
is a leading choice among EVs, especially in the European market where it has secured its position 
as one of the best sellers, has been taken as a reference. Since its introduction in 2010, global sales 
have exceeded 300,000 units, with 68,000 units sold specifically in Europe [31]. The EV battery 
pack architecture comprises two battery cells connected in series, which in turn are connected in 
parallel with two other cells, forming a battery module. A total of 48 battery modules are 
connected in series to create the battery pack. Each battery cell has a nominal capacity of 32.5 Ah, 
with a nominal voltage of 3.75 V and a maximum voltage of up to 4.2 V. Considering the number 
and configuration of the battery modules, the total rated voltage and capacity are 360 V and 24 
kWh, respectively. The complete battery pack is divided into three sections. One section contains 
24 modules positioned centrally within the pack, while the other two sections hold 12 modules 
each connected in series, located on either side of the central section. 

Eq. (1), eq. (2), and eq. (3) were employed to model the EV battery charging system. The EV 
discharge profile was developed based on the EV battery discharge behaviour analysis presented 
in [26] and the driving cycles described in [27]. Two distinct driving cycles, as illustrated in 
Figure 3, were selected for analysis. The first driving cycle, shown in Figure 3 (a), represents 
a weekend case characterized by recreational use. This cycle involves an extended journey of 
46,210.07 meters, typical of non-working days. In contrast, the second driving cycle, depicted 
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in Figure 3 (b), corresponds to a weekday case and represents a commuting journey. This cycle 
involves a shorter and more routine distance of 14,085.53 meters, reflecting typical work-
related travel patterns on working days. This approach provides more variability to the 
scenarios studied. 

 
(a) 

 
(b) 

Figure 3. Implemented driving cycles: (a) 'MODEM Hyzem motorway_total, and (b) LDV_PVU 
commercial cars road_total 

Grid model 
Currently, the Voluntary Price for the Small Consumer (PVPC) in Spain is structured into 

three time periods: peak, flat, and valley, which directly influence the cost of electricity throughout 
the day. This system was introduced in June 2021 to encourage more efficient energy use by 
offering lower rates during valley hours and higher rates during peak demand periods. The PVPC 
is directly linked to wholesale market prices and incorporates all regulatory updates, including 
adjustments in access tariffs and tolls approved by the Spanish regulatory authority. Consequently, 
the cost data employed inherently reflect both the major regulatory shift in 2021 and the minor 
adjustments implemented annually. This methodological approach ensures that the analysis is 
consistent with the actual market dynamics and regulatory framework over the study period 

Before 2021, the PVPC tariff followed a simpler structure with two time periods: peak and 
valley. The valley period generally covered nights and weekends when demand was lower, while 
the peak period included daytime hours when electricity demand was higher. This change to the 
three-period system was implemented to better reflect the fluctuating costs of electricity 
production. It is important to take this distinction into account for the different simulated scenarios, 
given the years in which each tariff structure was applied. The hours corresponding to each tariff 
period are shown in Table 2. The abbreviation DHA in the referenced table corresponds to Two-
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period Time Discrimination, while TD refers to the Three-period Domestic Access Tariff. Both 
abbreviations are derived from their original terms in Spanish. 

 
Table 2. Electricity market periods for tariff 2.0TD and 2.0DHA 

Period Days Time range 
Tariff 2.0TD (from June 2021 onwards) 

Peak Monday to Friday 10:00 - 14:00, 18:00 - 22:00 
Flat Monday to Friday 08:00 - 10:00, 14:00 - 18:00, 22:00 - 00:00 

Valley Monday to Friday 00:00 - 08:00 
Valley Saturday, Sunday, and Holidays All day 

Tariff 2.0DHA (before June 2021) 
Peak Monday to Friday 12:00 - 22:00 

Valley Monday to Friday 00:00 - 12:00, 22:00 - 00:00 
Valley Saturday, Sunday, and Holidays All day 

Optimization approach  
To improve the current MG presented, the GA is introduced to adjust both domestic and EV 

demand, and modify the supply source for both, by minimizing the costs associated with the power 
grid for a relevant week, thus improving the energy management of the MG. To do so, the GA 
follows a sequence of steps that includes initialization of the population, evaluation of the fitness 
level of each solution, selection of individuals, breeding of the selected ones, and creation of a 
new generation. These steps are repeated iteratively until the optimal solution or a previously 
established termination criterion is reached. It is important to carefully adjust its parameters and 
operators to ensure the effectiveness of the GA in different contexts and microgrid configurations. 
Table 3 details the specific parameter settings employed in the GA to address what is proposed in 
this research. 

The mutation and crossover rate values have been determined after a series of tests covering a 
complete range of values, from the minimum to the maximum (0 to 1) with steps of 0.1. These 
tests showed that a mutation rate of 0.3 provides the most effective results in exploring the search 
space associated with the optimization problem. Figure 1 shows the optimization process 
developed. 

Table 3. Parametrization of GA 

Parameter Function Value 
Objective function fun Minimize PVPC costs. 

Number of variables nvar Depends on the operating time of the load and 
EV. 

Lower bound lb ON switch time. 
Upper bound ub OFF switch time. 

IntCon - 1:nvar 
Population size - nvar 
Mutation rate mutation uniform 0.3 
Crossover rate crossoverlaplace 0.7 

Sensitivity scenarios 
This section provides a comprehensive overview of the energy demand and climatic 

conditions considered in this study, as well as an analysis of the various electricity cost scenarios 
derived from market fluctuations. 

Cases description. This study considered two simulated cases regarding total demand 
consumption and resource availability: Stable (sunny, characterized by higher availability of solar 
energy resources and lower energy demand) and Critical (cloudy, associated with lower 
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availability of solar energy resources and higher energy demand). Regarding energy consumption, 
the daily average for the Stable case is 127 kWh, whereas for the Critical case, it is 164 kWh. 

Concerning the classification of solar generation data into "sunny" and "cloudy" conditions 
was established through an analysis of total energy generation values over a specified week. The 
data indicate that the total solar generation for sunny days ranged from 203.28 kWh to 264.66 
kWh, while cloudy days exhibited generation values between 72.21 kWh and 201.80 kWh. 
Notably, the highest generation values were consistently associated with sunny conditions, 
whereas the cloudy conditions demonstrated significantly lower output levels.  

Electricity cost scenarios description. By analysing diverse scenarios, this study aims to 
observe the potential implications of fluctuating electricity costs on the operation and optimization 
of hybrid energy systems. Particularly, four relevant and different electricity cost scenarios for the 
Spanish market are considered. These scenarios were defined as follows: 

• War: This scenario reflects the period during which the impact of geopolitical conflicts 
significantly affected electricity costs in Spain (that is, the war between Russia and 
Ukraine). During this time, costs surged to unprecedented levels, highlighting the 
vulnerability of energy markets to external shocks. 

• COVID: This scenario represents the period in which the COVID-19 pandemic had a 
profound impact on electricity costs in Spain. In contrast to the War scenario, costs 
decreased substantially, reaching notably low levels. 

• BAU: This scenario represents a week of September 2024, during which a pronounced 
reduction in electricity costs is observed, particularly during the midday hours when solar 
generation peaks. This trend reflects the growing influence of renewable energy sources 
on market prices. 

• OMIP 2030: This scenario incorporates future projections based on the OMIP trends for 
Spain in 2030. It reflects anticipated market dynamics, including evolving energy supply 
and demand patterns, policy changes, and advancements in technology. 

Since the COVID scenario occurred before 2021, the corresponding electricity tariff is 
2.0DHA, while the remaining scenarios correspond to the 2.0TD tariff. The graphs representing 
electricity costs are presented in Figure 4. The data for the first three scenarios analysed in the 
sensitivity assessment come from the ESIOS platform of the electricity grid operator in Spain [32]. 
In contrast, the cost projections for the OMIP 2030 scenario were obtained from the Spanish 
market operator [33]. 

 
Figure 4. Comparison of electricity costs across different scenarios 

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0

Time [h]

100

200

300

400

500

600

700

800

El
ec

tri
ci

ty
 c

os
t [

€/
M

W
h]

War

COVID

Current

OMIP 2023



Díaz-Bello, D. c., Vargas-Salgado, C., et al. 
Smart Energy Management for Hybrid Systems: A Genetic…  

Year 2025 
Volume 13, Issue 2, 1130536 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 10 

 

Carbo dioxide emissions calculation 
Regarding the calculation of reduced CO2 emissions, the value provided by [34] of 0.10 

[tCO2eq./MWh] in the national system has been used to assess the impact of the proposed 
hypothesis. 

RESULTS 
This section begins by showing the costs obtained, as this is the main objective of the study 

and the sensitivity analysis. Then, the results related to energy consumption and CO2 emissions 
reduction are presented, to conclude with an analysis of the computation time of the optimization 
processes. 

Sensitivity analysis by electricity costs 
This section presents the electricity costs by case and scenario. The costs are shown for the 

Base condition (before the implementation of the optimization algorithm) and after applying the 
optimization algorithm, referred to as the Optimized condition. 

 
To assess the effectiveness of the model optimization and its performance under different cases 

for each scenario, Table 4 presents a comparative analysis of electricity costs across various 
scenarios, including War, COVID, BAU, and OMIP 2030. The costs are provided for both Critical 
and Stable cases, displaying the baseline and optimized values. This comparison highlights the 
differences in electricity costs between each scenario and the impact of the optimization process 
on cost reduction. 

 
Table 4. Electricity costs under different scenarios and optimization cases 

 Critical Stable 
 Base Optimized Cost reduction Base Optimized Cost reduction 

War 58.93 € 50.49 € -8.44 € -14% 30.40 € 22.54 € -7.86 € -26% 
COVID 7.17 € 4.33 € -2.84 € -40% 3.92 € 2.19 € -1.73 € -44% 

BAU 13.66 € 11.09 € -2.57 € -19% 8.15 € 5.79 € -2.36 € -29% 
OMIP 2030 6.33 € 5.27 € -1.07 € -17% 3.46 € 2.82 € -0.64 € -19% 

 
As observed in the cost savings, in both cases (Critical and Stable), there are reductions in 

electricity costs after implementing the optimization model for each proposed electricity cost 
scenario. A detailed examination shows that the scenario with the greatest impact from 
optimization occurs under the Critical case (with reduced availability of renewable energy), which 
will be the primary focus of the discussion in the study. 

The percentage values shown in Table 4 represent the reduction in electricity costs by scenario 
and cases after implementing the optimization model. These percentages highlight the cost savings 
achieved under each scenario, offering insight into the model's performance across varying cases. 

To study in greater detail how the electricity cost curves affect consumption costs by period, 
the corresponding calculations have been broken down and detailed in Table 5 for Critical and 
Stable cases. In this way, it is possible to observe the distribution of costs in each of the tariff 
periods: peak, flat, and valley. After the implementation of the model, it is possible to visualize 
how the model shifts electricity consumption costs (therefore, demand and EV, and electricity 
usage) towards the lowest cost periods. This analysis is carried out for each of the scenarios 
considered, making it possible to evaluate the distribution of costs according to the different 
weather and tariffs. 

 
Table 5. Weekly avoided costs by period for different scenarios and cases: base vs. optimized 

costs 



Díaz-Bello, D. c., Vargas-Salgado, C., et al. 
Smart Energy Management for Hybrid Systems: A Genetic…  

Year 2025 
Volume 13, Issue 2, 1130536 

 
 

Journal of Sustainable Development of Energy, Water and Environment Systems 11 

 

  Period Base Optimized Weekly avoided cost 
by period 

Weekly avoided cost by 
period 

Critical case 

War 
Peak 24.74 € 11.78 € -12.96 € -52% 
Flat 5.17 € 7.67 € 2.50 € 48% 

Valley 29.02 € 31.05 € 2.02 € 7% 

COVID 
Peak 5.97 € 2.43 € -3.55 € -59% 

- - - - - 
Valley 1.19 € 1.90 € 0.70 € 59% 

BAU 
Peak 7.04 € 4.32 € -2.72 € -39% 
Flat 1.01 € 1.72 € 0.71 € 70% 

Valley 5.60 € 5.05 € -0.55 € -10% 

OMIP 
2030 

Peak 3.37 € 1.73 € -1.65 € -49% 
Flat 0.54 € 0.68 € 0.14 € 27% 

Valley 2.42 € 2.71 € 0.28 € 12% 
Stable case 

War 
Peak 15.43 € 10.63 € -4.80 € -31% 
Flat 2.32 € 3.65 € 1.32 € 57% 

Valley 12.65 € 8.26 € -4.38 € -35% 

COVID 
Peak 3.16 € 1.27 € -1.89 € -60% 

- - - - - 
Valley 0.76 € 0.92 € 0.16 € 21% 

BAU 
Peak 4.20 € 2.39 € -1.81 € -43% 
Flat 0.68 € 1.16 € 0.48 € 71% 

Valley 3.28 € 2.24 € -1.03 € -32% 

OMIP 
2030 

Peak 2.00 € 1.17 € -0.82 € -41% 
Flat 0.33 € 0.57 € 0.25 € 76% 

Valley 1.14 € 1.07 € -0.07 € -6% 

Sensitivity analysis by energy distribution 
This section focuses on the analysis of energy consumption patterns across different cases and 

scenarios. The objective is to highlight the variations in electricity imports, as these are intricately 
linked to consumption behaviours under different circumstances. 

Table 6 presents a detailed breakdown of energy import for each scenario, including War, 
COVID, BAU, and OMIP 2030. This table contrasts the baseline consumption with the optimized 
consumption achieved through the implementation of the optimization algorithm. Comparing the 
energy imports before and after optimization shows how these patterns evolve in response to 
changing case conditions. 

 
Table 6. Energy imports under different scenarios and optimization cases, in [kWh] 

 Critical Stable 
  Base Optimized Cost reduction Base Optimized Cost reduction 

War 1218.18 1063.16 155.02 13% 643.60 477.65 165.96 26% 
COVID 1218.18 1049.44 168.74 14% 643.60 465.46 178.14 28% 

BAU 1218.18 1037.38 180.80 15% 643.60 469.66 173.94 27% 
OMIP 2030 1218.18 1039.16 179.02 15% 643.60 517.70 125.90 20% 

 
In the case of Table 6, it is important to note that, unlike Table 4, the values for imported 

energy in the baseline model (without optimization) remain constant across all scenarios. This 
uniformity arises because the consumption pattern is identical in the baseline model for all 
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scenarios. The differences in imported energy values only manifest after the application of the 
optimization model. Conversely, in the table related to costs, varying values were observed in the 
baseline model. This variability is attributable to the specific cost curve scenario being analysed, 
where each scenario presents a distinct cost structure. Thus, while the energy import values are 
consistent in the baseline model, the cost values fluctuate based on the underlying scenario, 
showing the model's ability to reveal economic insights as a function of the operating context. 

Following the implementation of the optimization algorithm, a marked shift in electricity 
imports can be observed across all scenarios. This shift is particularly evident in the peak periods 
from Table 7, where the optimization model effectively redistributes energy consumption, thereby 
reducing the reliance on imported electricity.  

 
Table 7. Weekly energy imports by period for different scenarios and cases: base vs. optimized 

costs, in [kWh] 

  Period Base Optimized Weekly avoided cost 
by period 

Weekly avoided cost by 
period 

Critical case 

War 
Peak 481.47 224.83 -256.64 -53% 
Flat 113.70 159.88 46.18 41% 

Valley 623.01 678.45 55.44 9% 

COVID 
Peak 817.73 335.95 -481.78 -59% 

- - - - - 
Valley 400.45 713.49 313.04 78% 

BAU 
Peak 481.47 281.85 -199.62 -41% 
Flat 113.70 161.44 47.75 42% 

Valley 623.01 594.08 -28.93 -5% 

OMIP 
2030 

Peak 481.47 241.85 -239.62 -50% 
Flat 113.70 142.73 29.03 26% 

Valley 623.01 654.58 31.57 5% 
Stable case 

War 
Peak 290.50 204.14 -86.36 -30% 
Flat 59.29 83.93 24.64 42% 

Valley 293.81 189.58 -104.23 -35% 

COVID 
Peak 438.13 171.28 -266.86 -61% 

- - - - - 
Valley 205.47 294.18 88.71 43% 

BAU 
Peak 290.50 149.83 -140.67 -48% 
Flat 59.29 101.59 42.30 71% 

Valley 293.81 218.23 -75.58 -26% 

OMIP 
2030 

Peak 290.50 172.90 -117.60 -40% 
Flat 59.29 109.39 50.10 84% 

Valley 293.81 235.42 -58.39 -20% 

Sensitivity analysis by carbon dioxide emissions saved 
This section presents an analysis of the CO2 emissions saved in terms of metric kilograms of 

CO2 equivalent (kgCO2eq) under various scenarios and cases. Table 8 summarizes the reductions 
in CO2 emissions achieved through the implementation of the optimization model for different 
scenarios, including War, COVID, BAU, and OMIP 2030. The negative values in the table 
indicate a decrease in emissions relative to the baseline conditions, highlighting the effectiveness 
of the optimization process in achieving lower carbon footprints.  

Given that this analysis focuses on weekly emissions reductions, the values are presented in 
[kgCO2eq] rather than the more commonly used metric tons of CO2 equivalent [tCO2eq]. This 
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choice reflects the smaller scale of weekly reductions, providing a more precise representation of 
the impact of the optimization algorithm over shorter timeframes. 

 
Table 8. Comparative of CO2 emissions saved in [kgCO2eq] 

  Critical Stable 
War 15.50 16.60 

COVID 16.87 17.81 
BAU 18.08 17.39 

OMIP 2030 17.90 12.59 

Computational time performance 
The computational times required for each optimization process under different cases and 

scenarios are presented in Table 9. These times offer insight into the performance of the 
optimization algorithm. As observed, the computational times vary across scenarios, with the War 
and BAU scenarios under Critical cases showing the highest computational demands, at 60 and 
62 minutes, respectively. In contrast, the Stable cases consistently required less computational 
time, with all scenarios except BAU showing times around 23 minutes. This variability in 
computational effort is likely related to the increased complexity of managing electricity demand 
under Critical cases, where the availability of renewable energy is lower, and the optimization 
process must account for greater constraints. 

 
Table 9. Computational times for optimization under different cases and scenarios, in [min] 

  Critical Stable 
War 60 23 

COVID 44 23 
BAU 62 16 

OMIP 2030 38 23 

DISCUSSION 
The implementation of the optimization algorithm in this study yielded substantial cost 

reductions across all scenarios. In the Stable case, the energy system operates with fewer 
constraints on renewable energy availability, allowing the optimization algorithm to function 
more efficiently by shifting consumption to less expensive periods and reducing reliance on more 
costly energy imports. For example, in the War scenario, which reflects geopolitical instability 
and its associated market disruptions, the optimization process resulted in a 26% reduction in 
electricity costs. Specifically, the net weekly costs before optimization were approximately 30.40 
€, and they decreased to 22.54 € after the optimization was applied, that is, a weekly cost reduction 
of 7.86 €. This represents a significant saving for just one week and highlights the optimization 
model's ability to manage energy resources effectively, even under circumstances where external 
market forces might otherwise inflate costs. Similarly, in the BAU scenario, representing 
contemporary energy market conditions, a cost reduction of 29% was also observed. This 
consistency across different scenarios under the Stable case suggests that the algorithm has a 
robust capacity to optimize energy usage by redistributing energy consumption to less expensive 
periods, even when the external market forces are less extreme compared to the War scenario. In 
this case, costs decreased from 8.15 € before optimization to 5.79 € post-optimization. This 
reduction, while lower in absolute terms compared to the War scenario, is still significant, 
particularly considering that the BAU scenario operates within a more predictable market 
environment. The algorithm’s effectiveness in both the War and BAU scenarios indicates that the 
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benefits of optimization are not confined to periods of market volatility, but also extend to more 
stable and regular market conditions. 

However, while the results under Stable cases are notable, it is under Critical cases that the 
optimization process showcases its full potential. Critical cases simulate scenarios where 
renewable energy availability is severely constrained, often due to adverse weather patterns or 
other external pressures that limit the system's ability to rely on clean energy sources. In such 
situations, the reliance on imported electricity increases, and without optimization, the system 
would face significantly higher costs. Under these more challenging conditions, the optimization 
algorithm proved to be exceptionally effective, yielding even greater cost reductions than under 
the Stable case. Concerning, the COVID scenario, for instance, which represents a period marked 
by unprecedented global disruptions in energy demand and supply chains due to the pandemic, 
the optimization algorithm delivered a reduction of nearly 59% in peak period costs. Before 
optimization, peak period costs stood at 5.97 €, but after applying the optimization model, these 
costs dropped to 2.43 €. This reduction shows the model's capacity to adapt to highly constrained 
energy environments. Moreover, the Critical cases also presented a unique challenge in the War 
scenario, where renewable energy is less accessible, and electricity import costs are higher. In this 
scenario, the optimization algorithm reduced peak period costs by 52%, lowering them from 24.74 
€ to 11.78 €. This reduction, though slightly lower in percentage terms than the savings achieved 
in the COVID scenario, is still highly significant given the much higher baseline cost in the War 
scenario. Additionally, the OMIP 2030 scenario, which projects future energy pricing trends based 
on market forecasts, presents another interesting case for analysis. Under Critical cases in this 
scenario, a reduction of 49% was observed in peak period costs, with costs falling from 3.37 € to 
1.73 €.  

The analysis of energy imports is also important since it shows the model's ability to reduce 
the reliance on external electricity supplies across all the studied scenarios. First, under the Stable 
case, the optimization algorithm resulted in notable reductions in energy imports, in situations 
where renewable energy sources are readily available. In the War scenario, for instance, energy 
imports were reduced from 643.60 kWh to 477.65 kWh, representing a 26% decrease. Similarly, 
in the BAU scenario, the optimization model achieved a 27% reduction in energy imports under 
the Stable case, lowering imports to 469.66 kWh. Furthermore, the results from the COVID 
scenario also reveal interesting insights into the algorithm’s performance under the Stable case, 
where energy imports were reduced by 28%, to 465.46 kWh. Although the reductions are less 
pronounced compared to those observed under the Critical case, this still represents a significant 
improvement in energy management.  

However, the most compelling results were observed under the Critical case, where the 
availability of renewable energy is more restricted. In these scenarios, the optimization model 
demonstrated its true potential by significantly reducing energy imports during peak periods, 
where the cost and demand for electricity are at their highest. For example, in the COVID scenario, 
energy imports during peak periods were reduced by 59%, dropping from 817.73 kWh to 335.95 
kWh. The results in the War scenario under the Critical case further validate the optimization 
algorithm’s adaptability. Peak period imports were reduced by 53%, from 481.47 kWh to 224.83 
kWh, a significant drop. It is also worth noting the results in the OMIP 2030 scenario, which 
projects future energy market conditions. Under the Critical case, the optimization model 
managed to reduce peak period imports by 50%, from 481.47 kWh to 241.85 kWh.  

Beyond the raw cost reductions, it is important to recognize how the optimization algorithm 
shifts energy consumption patterns, especially in terms of reducing peak period costs and 
reallocating demand to less expensive times of day. For instance, across several scenarios, it was 
observed that while peak period costs decreased significantly, there was a slight increase in flat 
and valley period costs, as the optimization process redistributed energy demand. This reallocation 
is particularly important as it demonstrates the algorithm’s capability to smooth out energy 
consumption, preventing spikes during high-cost periods and spreading demand more evenly 
throughout the day.  
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Furthermore, the optimization model presented in this study also shows a reduction of CO2 
emissions since it is directly linked to the energy imports reduction. In scenarios characterized by 
the Critical case, the optimization process was able to achieve reductions in emissions by 
redistributing energy use away from peak demand periods, helping to decrease the overall 
environmental footprint. In more Stable cases, for instance, in the BAU and OMIP 2030 scenarios, 
the optimization model continued to demonstrate its relevance. Although the availability of 
renewable energy was higher, leading to inherently lower baseline emissions, the optimization 
process still managed to deliver meaningful reductions in CO2 emissions.  

Concerning the computational times for the optimization algorithm, significant variations 
were observed across scenarios, reflecting the complexity of energy management under different 
cases. In the Critical case, such as the War and BAU scenarios, computation times reached up to 
60 minutes due to the need to manage limited renewable energy availability and fluctuating 
demand. Conversely, under Stable cases, computation times were considerably lower, typically 
around 23 minutes, as the optimization process benefited from more adaptative energy patterns. 

CONCLUSION 
This study presents an analysis of a genetic algorithm framework designed to optimize energy 

management in hybrid poly-generation systems, focusing on a significant week characterized by 
fluctuating energy prices influenced by global events. Simulations were conducted across four 
distinct scenarios: War, COVID, BAU, and OMIP 2030, reflecting a range of market conditions 
and price dynamics. The analysis was further contextualized by examining both Stable and 
Critical cases, the former with high resource availability and lower energy demand, and the latter 
with low energy availability and high energy demand. This procedure highlights the model's 
adaptability and effectiveness in diverse operational environments. 

The results show substantial cost reductions in electricity management, particularly under the 
Critical case where renewable energy availability was limited. For instance, during the COVID 
scenario, the optimization algorithm achieved nearly a 59% reduction in costs during peak periods, 
showcasing its capability to manage energy resources effectively in times of crisis. Its ability to 
reduce energy imports by shifting consumption patterns away from peak periods and into valley 
periods contributes to a more sustainable, resilient energy system that is better equipped to handle 
fluctuations in energy supply and demand. Additionally, the model contributed to significant 
reductions in CO2 emissions, reinforcing the dual benefits of economic efficiency and 
environmental sustainability. 

The computational performance of the algorithm varied across scenarios, indicating that while 
it effectively adapts to changing conditions, there remains an opportunity for refinement to 
enhance efficiency, particularly in constrained scenarios. Future research should aim to accelerate 
computational processes to enable real-time applications, thus maximizing the potential for timely 
cost and emissions reductions. 

Therefore, the study provided valuable insights into the implementation of advanced 
optimization techniques in energy management systems. Addressing the complexities of modern 
energy markets through simulations in significant contexts contributes to the ongoing address on 
sustainable energy practices and highlights the importance of resilient energy infrastructures 
against volatility in the electricity market. 
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NOMENCLATURE 

Symbols 
𝐶𝐶  Battery capacity [Wh] 
𝐸𝐸  Energy [Wh] 
𝑊𝑊ℎ  Battery energy [Wh] 
𝜂𝜂  Efficiency  
𝑆𝑆𝑆𝑆𝐶𝐶  State of charge  
𝑉𝑉  Voltage [V] 

Subscripts 
bat battery 
c charge 
d discharge 
max maximum 

Abbreviations 
ANN Artificial Neural Network 
BAU Business as Usual 
DR Demand Response 
ESIOS System Operator Information System 
EV Electric Vehicle 
GA Genetic Algorithms 
GWO Grey Wolf Optimizer  
HRES Hybrid Renewable Energy Systems 
LabDER-UPV Renewable Energy Laboratory of the Polytechnic University of Valencia 
MG Microgrid 
MPPT Maximum Power Point Tracking  
OMIP Iberian Energy Market Operator - Portuguese Hub 
PSO Particle Swarm Optimization  
PV Photovoltaic  
PVPC Voluntary Price for Small Consumers 
SoC State of Charge  
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