Journal of Sustainable Development of Energy, Water
and Environment Systems

http://www.sdewes.org/jsdewes

Original Research Article

Advancements in Multi-Objective Optimization for Planning and
Management of Multi-Energy Systems

Marco Tangi', Alessandro Amaranto’
!Sustainable Development and Energy Sources Department, RSE Ricerca sul Sistema Energetico, Via R.
Rubattino 54, 1-20134, Milano, Italy
e-mail: marco.tangi@se-web.it.

V- N
Cite as: Tangi, M., Amaranto, A., Advancements in Multi-Objective Optimization for Planning and Management of Multi-
Energy Systems, J.sustain. dev. energy water environ. syst., 13(2), 1130584, 2025, DOI:
https://doi.org/10.13044/j.sdewes.d13.0584

ABSTRACT
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INTRODUg

ems worldwide face numerous challenges [1], which often require a

parti luation of the system’s operation and the paradigm employed for its
plarfy nagement [2]

e of reducing greenhouse gases (GHGs) emissions to contrast rapid global
wanNgi s relying more significantly on non-programmable energy sources, like wind

ergy, whose production cannot be regulated to respond to the fluctuations of the
demand, unlike traditional fossil fuel-based energy sources [3], [4]. Energy storage solutions
are increasingly sought after to alleviate this issue, but they come with their own sets of
limitations, like elevated costs, low storage potential and limitations on their applicability.
Energy and heat production and delivery, which have traditionally been considered as two
separated entities, are now progressively merging due to the phase-out of old heat generation
technologies based on fossil fuels and the wider adoption of installations such as heat pumps
and co-generations power plants [5]. Other systems, like transportation, are also expected to
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become more electrified [6]. This shift, in turn, increase the cumulative load on energy grids
and alters energy demand patters.

Moreover, recent geo-political instabilities [7] and extreme weather patterns [8] have
highlighted the fragility of many energy systems to fluctuations in the supply and demand,
emphasizing the need to improve resilience by increasing independence from external sources
and implementing measures to mitigate the impact of such instabilities [9].

Finally, energy systems are shifting from a more centralized configuration, with few energy
production units such as large power plants, to a more distributed structure, with many
privately-owned and low production installations all interacting and contributing to the balance
of the system [10].

Multi-energy systems (MESs) have emerged as interesting and viable solutio

by a significant increase of non-programmable energy sources or t
importing or exporting energy via different vectors.

The planning and management of MESs poses sig
involvement of numerous technologies and the requirem
effectively operate systems designed for swift responsive
of such systems is often supported by modeling tools (see or a review), which enable the
pugh §ptimization. This optimization
has traditionally been done using a single ev ' (Mic, focused on the minimization of
the overall costs, for example to investigat, i affon regarding energy consumption
for residential building [12] or small, s
objective perspective reduces the co
uncertainty correlated to the collecti

re often aggregated via user-defined weights to
he context of multi-energy planning, where the
predominant, this corresponds to the definition of
QCTNES.

often highly diversified objectives to a single economic
debates and controversies, due to the intrinsic difficulties

#0on methodologies [16] represents an opportunity to tackle the intricate
CRergy planning. These models go beyond traditional compartmentalization,
r® more holistic understanding of energy dynamics [17]. Moreover, by considering
n-comparable objectives, the result is not a single configuration but a range of
different optimized system designs, each favoring a different set of objectives. [18], which can
then be explored to highlight conflicts and synergies between objective and identify viable
trade-offs solutions.

There are limited studies in literature that analyze multi-energy planning and management
with a multi-objective perspective. For example, [19] examines a case study in residential
contexts, demonstrating how multi-objective algorithms can effectively explore compromise
solutions between planning costs, fuel consumption, and environmental impacts; in [20] both
costs (to be minimized) and generation (to be maximized) are effectively optimized, while [21]
explores cost and emission dynamics in a system comprising fifty buildings and including
electric vehicles charging stations. Multi-objective optimization problems are sometimes



solved using hierarchical optimization or pairwise comparison to identify a set of weights
representing different stakeholder priorities, as in [22]

In recent works, multi-objective evolutionary algorithms (MOEAs) have been used for
MES planning in multi-objective contexts In [23] and [24], two-objective modeling
frameworks have been developed to design optimal investment plans that minimize both costs
and emissions. These studies focus on the energy and heat supply of a medium-sized town and
the energy and water supply of a small island, respectively..Finally, [25] utilizes a customized
version of the EnergyPLAN model, called EPLANopt, which applies a multi-objective
evolutionary algorithm (MOEA) to derive trade-off solutions between costs and emissions for
the energy system of the South Tyrol region in Italy. While these works contribute valuable
insights, they rely on specialized frameworks tailored to specific case studies. Agfa result

adapting them to different contexts requires significant effort compared to widely §gd sangle-
objective MES models such as CALLIOPE [15], PyPSA [26], H2RES [27] v PLAN
[28].

The above-mentioned literature highlights how the integration of mu ‘ Is and

multi-objective algorithms allows for the consideration of multidimensio
cost alone.
The central objective of this work is to develop a methodolgg arafc multi-energy

models and multi-objective optimization algorithms to increas app 'catlve flexibility
in multi-stakeholder contexts but also to reduce subjectivmgn\eu trade-off balances.
To do so, the explore and evaluate three different metho ping multi-energy models
with multiple objectives, aiming to extract the best p rad1 n this'regard. In particular, the

three methods are: 1) coupling the single-objecti g model CALLIOPE [15] with
an exhaustive sampling procedure consideriyg@® tf \ve weights of each optimization
objective (method a); 2) the integrationg with evolutionary optimization

algorithms for the optimal search of ing the relative importance of the
optimization objectives (method b); c\fCvolutionary algorithms for solving the
energy planning problem (method c)

logy\by exploring conflicts and synergies between
icaf f CALLIOPE in multi-objective contexts, while
s single objective. The advantage offered by these
techniques lies in eli
exhaustive samphng or advanced optimization techniques (method b). Finally,

E into a fully-fledged multi-objective planning and

er presents modeling alternatives for MES planning and management that are truly
multi-objective, allowing the identification of trade-off between different system
configurations under multiple, non-comparable objectives. The methodologies described here
also ensure a simple and easy integration with more widespread, single objective MES models,
with minimal to no modifications to their code.

METHODS

The methods presented in this paper aim to overcome the need to define a-priori
monetization rates (or any kind of aggregation weights or trade-offs variables) in single-



objective multi-energy system optimization models, to allow for multi-objective analysis for
non-comparable objectives.

To achieve this, the methodological workflow shown in Figure 1 was developed.. First, a
schematization of the case study is defined on the single-target multi-energy systems modelling
tool CALLIOPE. It includes both the technologies already installed in the analyzed area, and
the pool of potential installations identified according to the territory’s resources, from which
the algorithm can choose to plan the system configuration. For each technology, the system
defines its costs according to each objective. The configuration of the CALLIOPE model,
required inputs, and returned outputs are described in Section 3.

The three methods employed to extract the set of Pareto-efficient decisions in the decision
space of the problem differ in terms of modeling tools used, the number of igfuts, and
computational requirements. This section describes the structure and requiremef§g ofgeach
methodology, while Section 5 discusses their advantages and limitat) uding

considerations based on the results obtained from the case study..
pd D
inethod c)
tig prablem:
(1)

The analyzed methodologies are:
Pl e opwynal set of trade-off variables
or8 Ok the objective space, m* identifies

u, represents the optimal planning configuratio
(or weights) that allows for a comprehensive
the operational management decisions,
comprised by all functions employed
considered in the analysis. The sing
and optimizes m”* through a model p

1. Exhaustive method (method a)
2. Evolutionary multi-objective optimization on weights (met

e\g#ltidimensional objective function,
e ormances of the multiple objective

3. Evolutionary multi-objective optimization on system co,
All algorithms analyzed here aim to solve the following

ective model CALLIOPE fully defines
ol (MPC) algorithm; thus, the identification

Uy, Up,m" = arg minJ(up,
Up,urm
contrary, the definition of u, and ur varies
ill be subject of the analysis presented hereby.
cthodologies in quantifiable manner, the consistency

X multi-energy system. The model structure allows for the inclusion of
ion, conversion, storage, and consumption technologies. These interact

nds, also associated with an energy vector (e.g., demand for electricity or heat).
cified energy system can also be connected to external entities, such as the national
energy grid. The connection of the system to the electrical grid for energy import is modeled
as a new technology for energy generation that allows the purchase of electricity at a variable,
user-defined and time-varying price. The possibility of exporting excess energy to the grid, on
the other hand, must be specified for each installed technology by specifying the selling price.
The fulfillment of the local energy demands, however, takes priority over the energy export.
The first panel in Figure 1 shows a schematization of the input necessary to create a model of
a multi-energy system in CALLIOPE.

Once the system has been initialized with its installed or potential technologies and the
different energy demands that characterize it, CALLIOPE searches for an optimal system
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configuration from both planning and management perspectives, i.e., which and in what
quantities the available technologies should be installed, and how these technologies should be
operated, on an hourly time resolution. To do this, CALLIOPE uses a MPC algorithm to
optimize management, embedded within a Mixed-Integer Linear Programming (MILP)
algorithm for extracting planning variables. In this way, for each system configuration found
by the MILP algorithm, the software optimizes its management through MPC.

Both algorithms seek optimal solutions by minimizing a single performance indicator,
which in CALLIOPE corresponds to cumulative costs. CALLIOPE allows the definition of
different cost categories, whether economic costs or, for example, related to CO, emissions or
particulate matter. These costs can arise from the installation, maintenance, and management

technology and the operation strategy for each hourly timestep. Add

fixed and variable costs associated with technologies and the tal Costs for each
initialized cost category. %
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Figure 1. Paper workflow. The figure depicts a schematization of the procedures described in this
paper. Blue text indicates user-defined inputs, while red text represents outputs. Mathematical and
modeling tools used are shown in grey boxes.
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Multi-objective optimization

The single-objective optimization structure of CALLIOPE does not allow for the
exploration of trade-offs between different non-comparable objectives. Here, various multi-
objective analysis methods integrating CALLIOPE are applied and compared.

All the methodologies used return a set of Pareto-optimal system configurations. When
visualized in the objective space, these solutions form an approximation of the Pareto front,
which contains all possible non-dominated system configurations for the objectives considered.

Exhaustive method. A simple and intuitive method to extract optimal system configurations
showing the trade-offs between objectives, while remaining within the single-objective constrain

on the assigned weights.

As described in Figure 1a, the exhaustive method (method A) requires th
each objective, a set of weight values. To find compromise solutions, the
objectives must ensure that their performances, once weighted, are comparal
impact on the cumulative indicator used for system optimization. Thi§

NdWicdlly require a
basic prior knowledge on how the costs metncs for each objectiygmeg Opcach other, so that
eSagedgvalue used for the

cartesian product (where n is the number of objectivesgto extragl the set of all the possible weight
< asinglWweight value for each objective.
AN or each k, and returns different

n Clative importance of the objectives.

The CALLIOPE software is then initializ
configurations of the energy system, optimi
Considering the exhaustive nature of th
high enough to encompass the analysi

v

adeoff between objectives. This iterative
igurations, each linked to distinct objective
nt associated with this method.

ability distribution of weights that would lead to
ront. Consequently, this paper employs the Sobol

subset. While effectively enabling the multi- objectwe
exploration of tré %) thg mentioned method is constrained by the need to predefine the
cardinality

set too ht may igad™0 excessive computational complexity.
R i timization problem expressed in equation 1, the method A therefore defines
the s a priori, and for each combination, optimizes the energy planning u,, using
M

EvOlffonary multi-objective optimization on weights. An exhaustive exploration of the
feasibility space of relative weights associated with each objective presents strong limitations both
computationally and in terms of efficiently exploring trade-offs. A possible solution in this regard
could be the use of Multi-Objective Evolutionary Algorithms (MOEAs) that, instead of
determining the entire set of weight values to explore in advance, adapt the parameterization of
their search through an optimization process.

Despite various types being proposed in the literature (see, for example,[29]), most MOEAs
are characterized by a methodological process articulated in five main steps:

1. Initialization: randomly generate initial parameter values for optimization within a
predefined feasibility interval.




2. Simulation: perform simulations using the generated parameter values.

3. Objective Evaluation: calculate the values of the optimization objectives based on the
simulation results,

4. Pareto Selection: identify and store solutions that are Pareto-optimal.

5. Evolutionary Step: Generate a new set of parameter values for the next iteration
through combinations of the archived Pareto-optimal solutions.

The steps two to five described in the list above are repeated until either some convergence
criterion is met (no significant improvement between two consecutive iterations), or a certain
amount of pre-defined function evaluations are reached.

In this work, the objective weights constitute the decision variables of the MOEA. In each
1terat10n the algorithm 1dent1ﬁes a combmatlon of welghts which are then fed to CA OPE to

It is noteworthy that, in contrast to method a, method b eliminates the neces s
either K or its cardinality. Furthermore, in method b, the search procesgfis Opigized
evolutionary algorithm itself, eliminating the need to assume the probabi %
parameters (or weight). These two factors offer significant ad 0 te
computational efficiency and exploration effectiveness, since ;

definition of feasibility space for the weights.

In this work, the MOEA algorithm OMOPSO was imized Multi-objective
Particle Swarm Optimization, [30]). This algorithm emp -defined parameter € as a
threshold value below which the variation of an objecti
therefore the solution found can be excluded.

Returning to equation 1, method B uses th Qlgorithm described above to define
sets u; of weights that ensure the best possi ¥@f the objectives space. As with the
exhaustive method, energy planning a up, m) is optimized in CALLIOPE
using MILP and MPC.

tionWn system configuration. The third methodology
stem configuration by OMOPSO (method C). As
odology involves, as in the previous case, a coupling

Evolutionary multi-objectiv
involves the direct optimizatigp
shown in the diagram in Fig
between CALLIOPE
however, the decisior plegptimized by the algorithm are not the weights assigned to the

objectives, but thegmstaNed’Coag® for each available technology, defined as a percentage of the
maximum capaciy e, the planning of the energy system, which in the two methods
previously out internally by CALLIOPE via the MILP algorithm, is entrusted
to the MQER, mov y from the single-objective optimization of the MILP to a fully multi-

OPE, considering only the economic objective.
separation of the optimization operations of planning and system management

However, while all solutions found by the previous two methodologies were always optimally
configurated by the MILP algorithm, here, most of the configurations found by the MOEA across
its iterations will result sub-optimal. MOEAs typically require multiple iterations before returning
optimized solutions to the problem. At the start of the algorithm and for the first generations, the
analyzed system solutions are configured randomly or are extremely unoptimized. This is
necessary to allow the evolutionary algorithm to learn which configurations are more efficient and
converge towards Pareto-optimal solutions but may require a high number of iterations.

In reference to the optimization problem expressed in equation 1, method C foregoes the
search for u; in favor of only optimizing the system configuration up directly with OMOPSO,
while the identification of m* is still left to CALLIOPE via MPC.



Metrics of performance

The performance metrics employed in this investigation encompass the additive epsilon
indicator and hypervolume. These metrics offering a quantifiable measure of the consistency and
diversity of the Pareto sets approximation, respectively. Calculations for these metrics were
performed in relation to the reference set, i.e.: the best-known Pareto approximation obtained by
combining those of the three algorithms.

The additive epsilon-indicator [31] quantifies the largest distance that an approximation set
must be translated to dominate the reference set. Consequently, it exhibits heightened sensitivity
to gaps in trade-offs. If a Pareto approximate set contains gaps, solutions necessitate translation
over a more considerable distance, resulting in a notably increased additive epsilon-indicator
metric value. The lower the metric value, the lower the minimal worst-case distan: om the
reference set.

Hypervolume [29] measures the volume of the objective space do
approximation set. Thus, the goal is to maximize this metric. In this study,_h

normalized concerning the reference set hypervolume. Consequently, a vdlie G onifies that
S W lume stands
W sieonvergence

the approximation set dominates an equivalent volume as the referencg
out as a challenging and comprehensive metric, providing insights intog
and the diversity of its representation of trade-offs.

EXPERIMENTAL CONFIGURATION

This section reports the steps taken to apply the g
case studied molded after the Sulcis-Iglesiente
showing which method can identify suitable al
of the examined territory.

Case study modelization and data abi
Modeling the case study in CA®LIOPE reguird® hourly data on electricity and heat demand,
a
re

the availability of solar and windfeso information on the characteristics and maximum
theoretical capacity of potgfi installations, considering the territory’s availability.
of Cagliari and the use of previous datasets of RSE,
electricity and heat d, p obtained via from the dataset of the Italian ministry of
Economic Developm: scaled. The potential renewable energy production in the

gdolo described above to a synthetic
¢ in Jardinia, Italy, with the aim of
deoffs for the energy development

¢ pddsible planning alternatives u,, involve the expansion of the electric and thermal, as
well as € introduction of storage technologies, as shown in Figure 2. The technical and economic
parameters of potentially installable technologies are derived from previous works by RSE [33],
while emission factor values are not provided as they are considered null for all technologies. The
values of the maximum installable capacity serve as constraints related to the territory's capacity
to accommodate new technologies. It is important to note that this parameter serves only as a
constraint in the planning problem, and the solution will define the optimal capacity based on the
optimization objectives.

For photovoltaics, this value was calculated using the TOTEM tool, estimating the total
suitable area for installation, and dividing it by an occupancy coefficient set at 11 m2/kW for
ground installations and 5 m2/kW for rooftop installations, resulting in about 49 MW and 185



MW, respectively. For wind power, the possibility of doubling the currently installed capacity
(about 100 MW) onshore and installing the same capacity offshore has been assumed, selecting
the type of installation plant most suited given the wind energy data available.

Further planning alternatives include the installation of new heat pumps, with the potential
capacity to fully cover the total heat demand (178 MW). These heat pumps present a higher
efficiency then the one already installed (COP of 4 compared to 3.2). Finally, an electrochemical
storage technology is introduced to add flexibility to the system. A maximum installable capacity
has not been defined precisely given the uncertainties related to this technology and has been set
to a sufficiently high value so to not result as an upper boundary to the optimization.

Finally, energy import from the grid is associated with both a time-varying economic cost,

prices reported by the GME

Electricity
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Electricity Energy Heat
Demand (DE) E’ export demand (DT)
Figure 2. Con e of possible technological planning decisions in the synthetic case
study.

al current net cost J[€] is defined as the sum of investment costs C™™”, operational
costs CP¢T for each installed technology, plus the costs of importing from the grid C™P°"t, and
subtracting revenue from energy export C¢*P°"t_ Cash flows (operational costs, export revenue,
and import costs) are discounted annually based on a specific discount factor J Cis mathematically
defined as:



Nte

H H H
]C — Z Cjim; + Zdici(’ljper + dlz Ciimport _ dlz Ciexport 2
i=1 i=1 i=1

j=1

Where n;, represents the number of installed technologies, and H is the time horizon. The
discount factor d; is expressed in terms of the applied discount rate ts as:

g = 1
ET(1 + ts)i

both for the purpose of satisfying the local demand and exporting the energy to

calculated as:
N\
co, _ CO,
1

j=1 i=

Where E; j[kWh] represents the energy produced at

kg 7. ) o _
[_kvfh is a specific emission coefficient for each te

emit CO,. Moreover, the energy imported from C
national average for 2015 (0.26 kgCO, / kW hfflata frong [35D).
Particulate emissions J*Mx[kg] are ex ilar[y#0 CO; emissions, i.e., as the product

of the energy produced by a spec olo nd an emission factor ka" [%]
Mathematically:
PMyp (5)
k" E;

on local emission sources, thus only biomass boilers (emission
, 8r LPG or fuel oil boilers (0.12 kgPM,./kWh).
the energy grid J'™N[€], defined as the product of energy imported

import
i

W h] and the import price ¢ , 1s mathematically expressed as:

H
IN _ import 6
] - z Ci Ei,Rete ©)

i=1

Experiment Parameterization

All three methodologies aim to identify multiple optimal alternatives for sustainable multi-
energy territory planning and management. For each of them, an experiment is conducted on the
case study presented in the previous section. The configurations of the three methods are as
follows:

e Method a: Planning variables up are obtained for a single configuration of weights (or

trade-off variables) through MILP. The value of weights u; is exhaustively explored



through a sampling of the feasibility space ([0-1], [0-10], [0-1]) using Sobol Sampling
with a size of 1024. This implies that the planning problem is solved through MILP for
1024 function evaluations (FE), with weight values decided a priori through random
sampling.

e Method b: Similar to the previous case, up values are obtained through MILP. The value
of weights uy is determined through evolutionary algorithms, with feasibility space [0-3],
[0-30], [0-3]. The evolutionary nature of the algorithm enables an expansion (tripling) of
the feasibility space compared to method a, requiring fewer assumptions about the system
while avoiding an increasing in the computational burden. Each evolutionary algorithm
performs 1000 FEs, starting from an initial population of 100. To ensure that the found

(i.e., initializations).
e Method c: In this case, the planning variables up are no longer optimize
but through MOEA The algorithm's parameterization, as in the previo
specifying a maximum number of FEs, an initial population, and

\ seeds
These values are set respectively to 10,000 FEs (the number ofyart .%\ optimized
is more than double compared to the previous case), 100, and

RESULTS

The methodologies described in the Method secti cen @pplied to the Sulcis-
Iglesiente case study, to assess and compare their effecti ingxtracting interesting and
heterogeneous trade-off solutions for the planning anag@gent of the multi-energy system.

Pareto front identification

Figure 3 displays the results obtained b meth@ds in the considered case study. Each
ith the costs on the x axis and CO»
emissions on the y-axis. Marker colo e erfergy independence (defined as the sum of

the import costs), while the marke

areto frontier, it has been partitioned into 4 macro-regions, as
se regions do not possess defined boundaries and often blur with
5s help us to highlights groups of configurations that prioritize certain

shown in Fi
each other,

s in new renewable plants to reduce energy imports, and a heat production mainly
entrusted to new heat pumps to avoid the use of CO, and PMx emitting boilers.

In region I1I, the configurations found are optimized to maximize independence from the grid.
Like solutions in regions II, they are characterized by significant investments in renewables, which
are sought after here to reduce the system dependence to outside import. However, heat production
is mainly entrusted to oil and LPG boilers, avoiding additional energy purchase from the grid to
power heat pumps, while being cheaper than biomass boilers. These configurations overall emit
more CO; than other solutions on the frontier with similar economic investment, hence their
position on the upper part of the frontier.
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Finally, in Region IV, the solutions focus on minimizing CO, emissions, with less emphasis
on particulate reduction.. Solutions in this region have a similar energy production mix to those in
region II; however, they favor the use of biomass boilers rather than employing heat pumps
bowered in part by imported energy, which is associated with a low but still present emission rate,
resulting in increased particulate emissions and costs.
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Figure 4. Metrics of performance for the three algorithms tested in this study: a) Hypervolume
and; b) Additive epsilon indicator.

Figure 3 also allows for the comparison of the frontiers found using the three methodologies
described above. The frontier in Figure 3a, referring to the exhaustive method, appears to be
overall heterogeneous, with areas characterized by a low density of found solutions, such as zone
I, alongside others where a high number of solutions with almost identical configurations are
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present (the lower band in zone II). In comparison, the use of method B) results in a more
homogeneous and evenly-filled frontiers, with new configurations being found in previously
unexplored areas characterized by high costs and filling the previously sparse region with low
costs.
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Figure 5 Details on the multi-energy system configurations found using the exhaustive method.
Panel a) shows the The top-right figure identifies the macro-regions of the Pareto frontier used for its
description. Panel b) presents six examples of optimized system configurations. Each solution shows
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the percentage of total energy production for each present technology, for the electricity and heat
energy vectors.

Finally, method c), even while having the highest number of FEs, return the most incomplete
frontier, with many areas, especially those correlated with high costs, missing even a single non-
dominated configuration. This is reflected by the values assumed by the metrics of performances,
represented in Figure 4. Method b clearly outperforms both other techniques, dominating
(hypervolume very close to one), and consistently covering (additive epsilon indicator close to
zero) the entire objective space. Method a offers good performances as well, even though both
less consistent and diverse. The low epsilon indicator performance of method c) suggest large
portions of Pareto set unexplored. Moreover, further scrutiny into the configuratign of the
solutions reveal that many of them are still somewhat unoptimized, with multiple red@fidant heat
generation technologies being included even when not needed to fulfill the dema

Non-dominated system configurations

This section describes the features and composition of some non-dé ons to
provide an overview of the optimal configurations found by CALLS prent sets of
weights.. The solutions are extracted from the Pareto front returned b e method, as

the other methods only returns the objective performance and d. alues of the non-
dominated solutions, requiring extensive computation to re

extract the full details on the conﬁgurations

or solutions identified by
CALLIOPE for different weight sets. The example j1to two groups, presenting very
similar cumulative costs (solutions I, II, and III 1 , V, and VI in the second).

Solutions I, II, and III are low-cost con terized by a similar mix of electrical
1 and rooftop photovoltaic plants, and

rodliction. As expected, solution I has the lowest
izing energy imports. The energy mix for heat

grid constitute more than a third
grid import, as it focuses pri

70% derived from fosgi’Tuel D@lers™¥m solution III, with aims to only minimize CO» production,
biomass boilers are us ach Mye a higher cost than other boilers and emit considerably more

heat pumps.
In solut1 ns VI, the increase in invested capital is justified by the installation of
offshore iffes, the most expensive available power generation technology. Regarding

heat rns similar to those observed in the previous three solutions are found.
Con like I, mainly invests in fossil fuel boilers to reduce both costs and the energy
1 on V mainly uses heat pumps to meet the demand, while Solution VI favors the
ado -masse of biomass boilers to minimize CO> emissions

Figtf€ 6 provides a visual indication of the adoption frequency of available technologies in
the case study under consideration, depending on the weight given to the objectives considered
and their relative importance in terms of total energy production. As can be seen, for renewable
electricity generation technologies, generated power increases with increasing investment costs,
moving from left to right, while it appears almost unchanged moving from top to bottom, or
moving from solutions that prioritize grid independence to those that aim to reduce CO> and
particulate emissions. Therefore, regardless of the prevailing objective, the sequence in which
technologies are adopted with increasing investments appears similar, with the adoption of
onshore wind and ground photovoltaic first, followed by rooftop photovoltaic, electrochemical
storage batteries, and onshore wind.
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Figure 6. Fraction of energy generated by each of the available technologies for installation, for
Pareto-efficient solutions found through the exhaustive method. The color of the indicators reflects
the fraction of the annual energy production generated by the analyzed technology, relative to its
primary output energy vector. The color scale represented by the color bar to the right of each graph
has different values for each technology
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The patterns appear different when considering heat generation technologies. In this case, the
presence of different technologies is strongly influenced by the relative importance of the
independence, CO», and particulate emission objectives. On the graph, this results in an increase
or decrease in energy production by moving vertically on the frontier. Returning to the zone
partitioning in Figure 3d, GPL and oil-fired boilers are mainly adopted in configurations that focus
on independence (at the top of the Pareto frontier, in zone III and IV). In contrast, biomass boilers
dominate heat production in solutions that aim only to reduce CO; emissions. The new heat pumps,
present in almost all solutions, in configurations in zone II emerge as the predominant heat source
in the system, as they avoid direct CO, and particulate emissions resulting from boiler use.

DISCUSSION AND FUTURE RESEARCH

dominated solutions which showcases srgnrﬁcant trade-offs betwe
The methodologles outlined above can be compared based g

pproximation of the
gations obtained highlight

diverse set of optimal system configurations (and thus
full Pareto front). The latter goal guarantees that the opt1
all possible trade-offs between non-comparable objgg

sufficiently heterogeneous Pareto frontier, wha
and distribution of the initial sampling. T

extraction of weight sets represents an
oreover, exhaustive methods like the one

objectives relate to each other. For
evident point of criticism in this
described run the risk of bei
to front, it is observed that, especially in zone II
ghts converge on configurations that are particularly
er’s, with comparable obJectrve performances whrch

in Figure 3d, different co
similar or practically i

gurations instead appear extremely sensitive to the shghtest
variation in the & eights, and therefore the broad sampling of the space of weight

combinatioff resuld

y utilize the allocated computational resources, with areas of the
irtylly unexplored and others characterized by an elevated density of mostly
tions.

of the Pareto frontier, with better results than the exhaustive method. The resulting
ears more complete and evenly distributed. Although this method still requires the
a priori definition of value range to assign to the weights, the use of MOEAs allows for the use
of wider ranges, reducing the need for prior knowledge of the system. In fact, the ability of
MOEAs to gradually evolve across their iterations to better explore the decision space in the
search for interesting new non-dominated solution guarantees a more efficient use of the
available computational resources. However, this method still requires prior knowledge of the
system to define the weights feasibility spaces.

Finally, the Pareto frontier extracted with the multi-objective evolutionary optimization of
system configuration method(C) appears populated by configurations that are not fully
optimized and devoid of entire areas explored by the other methods. Indeed, it appears that the



method has a clear limitation in its high computational demand. MOEAs typically require
multiple iterations before returning optimized solutions to the problem. At the start of the
algorithm and for the initial generations, the system configurations are random or extremely
suboptimal, but are nevertheless run through CALLIOPE to extract objective performances,
with great expense of computational resources. This is necessary to allow the evolutionary
algorithm to learn which configurations are more efficient and converge towards Pareto-
optimal solutions. However, depending on the complexity of the problem, these solutions may
only be identified after a very high number of iterations. In comparison, in the previous two
methods, the configurations returned by CALLIOPE for each weight set are all Pareto-efficient,
with the only risk being their redundancy. Furthermore, the MPC method for optimizing

significantly more computational resources being allocated.

In general, method B appears as the most effective for optigai
systems. Thanks to evolutionary algorithms, it allows fox
resources and uniform and heterogeneous exploration

oved ineffective in the case study
examined, it could be effective for less co h fewer decision variables.
The different system configurations

of variance in both the type and ca nologies installed. This heterogeneity

As the main goal of this_r¢€ identification and analysis of different multi-
objective multi-energy s ion models, the methodologies were tested on a
synthetic case study withad®
for a real case study, 4 @ mcyfunddmental to include multiple years of data, as well as tools
to consider and igeegpd )

dte, socio-economic, and technological uncertainties on the system
figurations to identify solutions that are not only optimal but also

WBuld allow the sensitivity of the optimization objectives to multiple
s. New evaluation metrics, such as those presented in [37], can also could be
identify optimal solutions that are resilient to uncertainties in the system and
ges.

CONCLUSION

The transition from traditional energy systems to multi-energy systems is considered vital for
achieving decarbonization goals. Multi-energy systems allow for more efficient use of available
resources through greater flexibility derived from the integrated management of the entire system
and interaction among different energy vectors through storage and conversion technologies. They
are particularly suitable for addressing the challenges of massive integration of non-programmable
renewable sources into energy systems and adapting to local resources.



The integration of processes and energy vectors traditionally kept separate in these systems,
however, makes planning and management particularly challenging. Therefore, to ensure efficient
system configuration, the support of modeling tools that allow exploration of different alternatives
and extraction of optimized solutions is necessary.

Many of these models, often have a single-objective perspective, maximizing the monetary
profit of the system, resulting from the influence of traditional energy system planning paradigms,
which typically favored economic objectives as the single or predominant evaluation metric. The
work contained in this paper aims to overcome this limitation and develop multi-objective
planning systems for multi-energy systems by coupling the single-objective multi-energy model
CALLIOPE with multi-objective optimal solution search tools.

To this end, three different methods have been considered and explored and a
synthetic case study. The first method involves coupling CALLIOPE with an exhauStye
sampling procedure, the second involves optimal search for relative weights thrg#ohgnteration
with evolutionary optimization algorithms, and the third uses these algorithms % rgy

planning problem resolution and multi-objective evolutionary optiffiiZang
configuration. %
)

All three methods return multiple and diverse configurations offf thCNg® rgy system,
188 and ofjectives. However,
objgltive evolutionary

@ gien its ability to thoroughly
explore the Pareto front and extract heterogeneous system com€uratiohis.

g integrated with other widely
available MESs planning and management &b use single-objective matrices to
optimize the system configuration, such as P, '

which allows for the identification of the interplay between techng
the performance indicators highlighted how the employme
algorithm for the weights space exploration (method b)

ACKNOWL.EDGMENT(S)

This work has been financed e ResgarciNFund for the Italian Electrical System under
the Three-Year Research Plan 2822-2 (DM MITE n. 337, 15.09.2022), in compliance with
the Decree of April 16th, 20,

a

We thank Simona R{@
development.

Q2

eo Troncia for the support with the case study

NOMENCLAT

GHG ecwhouse Gas

MES Iti-energy System

MILP ixed-Integer Linear Programming
0] Multi-Objective Evolutionary Algorithm
P

M
M Model Predictive Control
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